

Another eBookWholesaler Publication

Simple PHP with Robert Plank

Copyright 2003 by Robert Plank All rights reserved.

Proudly brought to you by

 Lewis Philips signature books

Email

Recommended Resources

Web Site Hosting Service

Internet Marketing

Affiliate Program

http://www.ebookwholesaler.net/cgi-bin/ccShare.pl?cmnd=home&id=PhilipLewi
http://www.lewisphilipssignaturebooks.com
mailto:lewisphilips0123@gmail.com
http://www.hostingbay.com.au/idev.php?id=4004
http://www.worldinternetoffice.com/app/aftrack.asp?afid=1414719">
http://e82c05ib2sf1dw64w81exn3v6u.hop.clickbank.net/?tid=HVTJQ4R9

Simple PHP

Copyright © 2003 Robert Plank Page 1 of 189

Contents

Introduction ..3

Chapter 1 Site Personalization With PHP...4

Assignment: .. 7
QUIZ ... 7

Chapter 2 Password Protection With PHP ..9

Assignment: .. 13
QUIZ ... 13

Chapter 3 Autoresponders With PHP ...15

Assignment ... 21
QUIZ ... 21

Chapter 4 More Autoresponders With PHP..23

Assignment ... 33
QUIZ ... 33

Charpter 5 JavaScript Fun With PHP..35

Assignment ... 44
QUIZ ... 44

Chapter 6 More JavaScript Fun With PHP ...46

Assignment: .. 53
QUIZ ... 54

Chapter 7 Basic Arrays and PHP ..55

Assignment: .. 61
QUIZ ... 61

Chapter 8 File Handling With PHP...63

Assignment ... 72

Simple PHP

Copyright © 2003 Robert Plank Page 2 of 189

QUIZ ... 72

Chapter 9 Anything of the Day With PHP..74

Assignment ... 82
QUIZ ... 82

Chapter 10 Affiliate Script With PHP...84

Assignment: .. 94
QUIZ ... 94

Chapter 11 Our Knowledge With PHP ...96

Assignment: .. 111
QUIZ ... 111

Chapter 12 Cookie Fun With PHP..113

Assignment ... 120
QUIZ ... 121

Chapter 13 Comparison With PHP ...122

Assignment ... 136
QUIZ ... 137

Chapter 14 Loops With PHP...138

Assignment ... 146
QUIZ ... 146

Chapter 15 A Calendar With PHP...148

Assignment ... 160
QUIZ ... 160

Chapter 16 Functions With PHP ...162

Assignment ... 168
QUIZ ... 168

Chapter 17 Saving With PHP..170

Assignment ... 183
QUIZ ... 183

Quiz Answers ...185

Simple PHP

Copyright © 2003 Robert Plank Page 3 of 189

Introduction

Welcome to Simple PHP. Originally written as a 17 week article series, Simple
PHP is the most comprehensive tutorial available on the Internet.
Each chapter uses interactive instruction, closing with an assignment to complete
before progressing to the next chapter.
The most effective way to learn the material provided here is to read an article,
perform the assignments for that week, then take the quiz to see how well you
understood that article's content.
Robert Plank is the coder of Lightning Track, RedirectPro, TurboThanks and
CodeWarden, Ezine Rocket, Hypersplitter, and countless others.

If you'd like to give feedback, please visit RobertPlank.com.

Enjoy!

http://www.lightningtrack.com/
http://www.redirectpro.com/
http://www.turbothanks.com/
http://www.codewarden.com/
http://www.ezinerocket.com/
http://www.hypersplitter.com/
http://www.robertplank.com/

Simple PHP

Copyright © 2003 Robert Plank Page 4 of 189

Chapter 1 Site Personalization With
PHP

Your HTML files can work as PHP scripts.

Take any HTML file you have and rename it to a PHP extension. (So for
example, if your HTML file is named sales.html, rename it to sales.php).

Put sales.php on your web server and run it in your browser. You get the exact
same result as you did with the HTML page. Now, for the good part.

Say you wanted to personalize one of your sales pages. Let's call that
sales.php. Now, if you had a newsletter or wanted to give this "personalized
link" to someone, your visitor's name could be added on-the-fly to your sales
page.

Your link should look something like this:

http://www.your.host/sales.php?firstname=Big&lastname=Bird

In this example, your.host represents your domain name and sales.php your
HTML file turned PHP script. This would be the link you could give Big Bird
when you ask him to visit your sales page.

Now, edit sales.php and find where you want Big Bird's name to appear. The
first and last names are given to the script separately so you could have anything
from "Hi Big Bird!" to "Dear Mr. Bird..." For simplicity let's just stick with
showing both the first and last names for now.

Insert this anywhere into your "script":

<?php echo "$firstname $lastname"; ?>

Simple PHP

Copyright © 2003 Robert Plank Page 5 of 189

Now try that sample link I gave you earlier on that sales page of yours. You
should see the phrase "Big Bird" anywhere on your page.

Remember that you can stick this in anywhere on the page. So for example if
you wanted it to say "Dear Big Bird," you would just do this (with the comma at
the end):

Dear <?php echo "$firstname $lastname"; ?>,

If you wanted to show only the first name, use
<?php echo "$firstname"; ?> instead. The same applies to the last name.

If you want to go ahead and shorten the URL even further, you can even use the
letters "F" and "L" instead of firstname and lastname.

For example, try this in your page:

<?php echo "$f $l"; ?>

And then use this URL (substituting with your correct URL, of course):

http://www.your.host/sales.php?f=Oscar&l=Grouch

The result is the same. I think we want our URLs to look a little better, though.

The format I used in that above example was:

http://www.your.host/sales.php?f=Big&l=Bird

Now, the problem with this is that this link looks really ugly. Another setback
with this format is that anything to the right of the "?" won't be indexed by some
of the smaller search engines.

Here's a way to change this:

http://www.your.host/sales.php?f=Firstname&l=Lastname

Simple PHP

Copyright © 2003 Robert Plank Page 6 of 189

To this:

http://www.your.host/sales.php/f=Firstname/l=Lastname

It's really easy. Just change your script to this:

<?php

$myvars = explode("/",$REQUEST_URI);
for ($i=0;$i<count($myvars);$i++) {
 $holder = explode("=",$myvars[$i]);
${$holder[0]} = $holder[1];
}

echo "$f $l";

?>

And in just a few lines of code, your personalized PHP script's URL just looked
a whole lot better.

I won't bore you with the details of what that script does, but it basically chops
up the URL you gave it and picks out the pieces it wants using array exploding
and variable-variables.

This snippet can also be used on almost any PHP script as well. (I used this
method when I coded Brian Garvin's Lightning Track ad tracker... if you ever see
a URL anywhere with "go.php/etc" in it, that's my script.)

Hopefully we all learned something today. This mini-tutorial was brought to you
by the letters "P-H-P."

Simple PHP

Copyright © 2003 Robert Plank Page 7 of 189

Assignment:

Try this script again, this time trying to insert a plus sign (+) for the value of "f",
for example: example.php?f=first+name

QUIZ

1. A variable called "onion" would be referenced like this:
 A: %onion
 B: $onion
 C: ***onion***
 D: #onion

2. True or false: A file ending in .php containing only HTML (no <? or ?> tags)
will behave exactly like an HTML document.
 A: True.
 B: False.

3. If you wanted to output the variables $one, $two, and $three, with a space in
between each, how would you do it?
 A: echo "$one two $three";
 B: echo $one $two $three;
 C: echo onetwo$three;
 D: output "$one $two $three";

4. Your script is located at "http://www.your.host/sales.php". You want to pass a
variable called "monkeys" with the value "20" and a variable "fork" with the
value "tasty" into this script. How would you do it?
 A: http://www.your.host/sales.php?monkeys?20?fork?tasty
 B: http://www.your.host/sales.php?monkeys=20?fork=tasty
 C: http://www.your.host/sales.php,monkeys=20,fork=tasty
 D: http://www.your.host/sales.php?monkeys=20&fork=tasty

Simple PHP

Copyright © 2003 Robert Plank Page 8 of 189

5. Your script, located at "http://www.your.host/t.php" contains the following
code:
<?php echo $YELLOW; ?>

If you go to "http://www.your.host/t.php?yellow=yes", what will you see?
 A: I won't see anything.
 B: It will output "yes".
 C: The script won't even work.
 D: It will output "yellow".

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 9 of 189

Chapter 2 Password Protection With
PHP

Read the previous article/chapter, because I have one addition to make your life a
little easier.

Now, remember how we personalized a page for your visitor? This works fine,
but what do we do if they didn't use that special link, and just went to the page?

What I'm saying is, if your special personalized page was at
http://www.your.host/sales.php/f=Oscar/l=Grouch but your visitor only went
to http://www.your.host/sales.php. Instead of the name there would just be a
blank spot! Last chapter I forgot to cover this.

All we have to do to fix it is to tell PHP that if they didn't leave a name, to
substitute one in for them. So let's say that if they left their first name blank to
make their first name "Friend". This way instead of saying "Dear Oscar:" it
would say "Dear Friend:".

Put the following line of code JUST ABOVE THE LINE that says something
similar to: echo "$f $l" :

if ($f == "") { $f = "Friend"; }

That way, you can use your special personalized page as a normal page and no
one will be the wiser.

Password protection is something you need every once in a while. Whether it's a
secret site you're running or just the control panel of your favorite script.

Sometimes you don't need a fancy solution like .htaccess if you're only worrying
about a single user (you). But JavaScript passwords can be worked around, and

Simple PHP

Copyright © 2003 Robert Plank Page 10 of 189

HTML-based passwords based on cookies, written in PHP are complicated and
take time to write. Htaccess is nice but it's a pain if you just want to use it for
one person.

Here is a simple way to use HTTP authentication (the same you see used by
htaccess) with just a few lines of code. Below are the sample contents of a file
you can use.

<?php

$myusername = "myusername";
$mypassword = "mypassword";
$areaname = "My Protected Area";

if ($PHP_AUTH_USER == "" || $PHP_AUTH_PW == "" ||
$PHP_AUTH_USER != $myusername || $PHP_AUTH_PW != $mypassword) {
 header("HTTP/1.0 401 Unauthorized");
 header("WWW-Authenticate: Basic realm=\"$areaname\"");
 echo "<h1>Authorization Required.</h1>";
 die();
}

?>

my main text.

* The function die(); I've placed below it tells PHP to stop everything
immediately. I do this out of habit (and you should too) because it makes sure
that once you've done the redirect, nothing else gets sent. Which is what we call
"a good thing".

Last chapter we learned that PHP code can be integrated into your HTML. All
you have to do is make sure the file ends in .php (for example, "firehydrant.php")
and it will work. Everything that comes in between this:

<?php

Simple PHP

Copyright © 2003 Robert Plank Page 11 of 189

/* And this: */

?>

Is treated as PHP code. Everything outside of those tags is treated as plain
HTML.

When copying this code over be SURE to include that last line where it says "my
main text." Note that "my main text" is located outside of the PHP code
brackets. This means that where you see "my main text" can be your normal
HTML file!

Take all of this code and Upload the script onto your web server and run it in the
browser. You should be greeted by a password popup box similar to those you
see with htaccess. Enter "myusername" as the username and "mypassword" as
the password. You should be given a page that says "my main text" and nothing
else.

Close your browser window (this is very important) and go back to that
page. Try entering the wrong info. The box will come up again. You have three
tries and then are given that dreadful "Authorization Required" message.

If you want to take the next step, go back to your code and change
"myusername" and "mypassword" to a username and password of your choice.
Upload it back to your web server and try again. Now go to that page again and
you'll see that you can only be let in using the username and password you chose
for yourself.

Now change the part that says "My Protected Area" to something else, say "John
Calder's Bar and Grill." Upload and try it. You'll see when that password box
comes up under "Realm" it'll say "John Calder's Bar and Grill." You can change
this to whatever you like.

But what if you want to password protect just a handful of files? Do you have to
copy and paste this code onto PHP script after PHP script?
Hell no!

Simple PHP

Copyright © 2003 Robert Plank Page 12 of 189

Take the code you just modified and take the last line out of it. You know, the
one that said "my main text." All you should have in there now is everything in
between the PHP brackets (<?php and ?>).

Save this file as "auth.php". You can rename this later, on your own time.

Make a new file called "test.php" or just rename a normal HTML to this
name. It doesn't matter. At the very top of test.php (the VERY top, meaning the
first line) copy and paste this line of code:

<?php include("auth.php"); ?>

Upload auth.php and test.php to your web server and run test.php. Make sure
both files are placed in the same folder. Now, try to go to test.php in your web
browser. You'll see that you can't get to test.php without the right username and
password. You can do this to any file with a ".php" extension just by adding that
one line of code.

The catch to it is that this line of code has to be at the very top of the file. On the
very first line. The reason for this is that when the script asks for a person's
username and password, these are sent using HTTP headers and *must* come
before anything else.

Of course, this doesn't take care of your secret sites or private members' areas,
where you have to deal with several logins, but that's what htaccess is for.

While we're on the subject of includes, one last thing before we finish up.

Includes are basically a way of absorbing other files into your script. As you saw
when we included auth.php, the script read everything that was in auth.php and
used it as if the contents of that file were actually there. This works with not
only PHP scripts but also with other files as well.

Make a new file called "header.html". Put anything you want in it, but I just put
"This is my header
" when I did it.

Simple PHP

Copyright © 2003 Robert Plank Page 13 of 189

Make a second file called "footer.html". Again, go again and put anything you
want in it, but I just put "This is my footer
" in.

Make a third file called "main.php". Copy the following into it.

<?php include("header.html"); ?>

This is my main page

<?php include("footer.html"); ?>

Upload all three into the same folder and run main.php. You should see the
following:

This is my header
This is my main page
This is my footer

This is just a basic example of how includes can be used. But if you have a web
site with several pages and the same layout... wouldn't it be easier just to put
everything above your main text in header.html and everything below that main
text in footer.html? That way if you change your design you only have to edit 2
files instead of 100 or 200?

You'd think.

Assignment:

Look up the include() function at PHP.net. Find out the difference between
include(), include_once(), require(), and require_once().

QUIZ

1. You have a file called "test.html". Your file contains this code:
<?php echo "hey friend"; ?>

Simple PHP

Copyright © 2003 Robert Plank Page 14 of 189

What will be the resulting HTML? Meaning, what will you see in the browser
(not in the source code):
 A: The phrase "hey friend" in bold
 B: The phrase "hey friend"
 C: The phrase "hey friend" and then a line break
 D: I won't see anything because the filename doesn't end in ".php"

2. Let's say you wanted to include the file "hello.txt" in your script. How would
you do this?
 A: include("hello.txt");
 B: include=hello.txt
 C: #include <hello.txt>
 D: It's impossible.

3. In one of the code snippets in this article, I made use of the die() function.
What do you think this means? (Feel free to look it up at php.net if you don't
know.)
 A: Causes the entire server to shut down.
 B: Reduces the heartbeat of the user to 0 beats per minute.
 C: Causes the script to give up right there and then.
 D: No one really knows what it does for sure.

4. True or false: For HTTP authentication to work, the "realm" *must* be set to
"John Calder's Bar and Grill".
 A: True.
 B: False.

5. True or false: HTACCESS uses HTTP authentication.
 A: True.
 B: False.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 15 of 189

Chapter 3 Autoresponders With PHP

First off, you're going to learn how to make some simple text-only
autoresponders.

To do that, we need to know three easy things: redirection, mail sending, and
form submission.

When we finish with that, you will know how to put those components together
and create an autoresponder. Because if you think about it, that's all an
autoresponder does. Somebody enters in their e-mail address, is sent an e-mail
message, and is then redirected to a new page.

Of course there are more complex autoresponders, like Gary Ambrose's Opt-In
Lightning, or Wes Baylock's Mail Master Pro which handle multiple follow-ups
and record the e-mail addresses of those who have signed up for the responder.
But today we're just going to focus on how to make a very basic, very simple
autoresponder.

Hopefully, you've seen what form fields in HTML look like. Here's some code
you can use for an example:

<form action="some-script.php" method="post">
Enter Your E-Mail Address: <input type="text" name="email" size="30">

<input type="submit" value="Submit">

Copy and paste this code into a file called "signup.html" and upload it to your
web server. You'll see a text box waiting for your visitor to enter his or her e-
mail address so they can be sent that autoresponse message.

Of course, the form won't work just yet because, if you look at the first line of
that HTML code I gave you, you'll see that the form submits to a script called

Simple PHP

Copyright © 2003 Robert Plank Page 16 of 189

"some-script.php". And we haven't made that just yet.

Look on the second line of "signup.html", at the last half of the line. You should
be familiar with HTML tags, but if you're not, an HTML tag consists of two
parts: the parent tag and the attributes.

The parent tag is simply the tag's designation. For example, if you had a slice of
HTML code that looked like this:

Then the parent tag would be "font". The rest of what's enclosed in the tag tells
the browser what to do with it. For example, in this tag the attributes are that the
font should be Verdana with size 1.

Why am I telling you all this? Because it relates to the HTML code you see in
signup.html.

Now, when you look at this:
<input type="text" name="email" size="30">

The code tells the receiving browser that this is an "input" tag, meaning that it's a
form field. The name of this item is "email" and its size is 30, meaning this text
box should be 30 characters in width.

When the form is submitted, it takes all the values of all the fields inside that
form and throws it at its destination. In this case, our destination is "some-
script.php".

If you're lost, this will all make a whole lot more sense once you try this next
step.

Make a file called "some-script.php" and paste this line of code into it:

<?php echo $email; ?>

Upload the script in the same folder as signup.html, and go to "signup.html".

Simple PHP

Copyright © 2003 Robert Plank Page 17 of 189

Type your e-mail address in and click the submit button.

You should see a new page containing just your e-mail address and nothing else.

Is this starting to make sense? You told the PHP script to dump the contents of
the variable called "email" to the screen, and you just submitted a form with a
text box called "email".

If you want to try one more exercise like this, change the name of the text box to,
say, "goober" in signup.html and change the $email in some-script.php to
$goober. Upload both, go to signup.html, and type anything into the text box.
You'll get the same result.

This is how you'll pass data from forms (like text fields, drop down menus, radio
buttons and the like) along into the PHP scripts you create.

We've just covered how to submit form elements into PHP. Now let's focus on
sending mail.

PHP has a really simple function that uses whatever mail sending program is
installed on your server to send messages to the outside world. If you have a
crappy web server, this step might not work and you'll have to use a different
web host if you want to try this.

But if you're on a good web host that has PHP installed *correctly*, this
shouldn't be a problem.

Up until now we haven't used functions in PHP too much, aside from simple
things like include() and header(). Today's your lucky day, because functions
work in a very similar way to HTML tags. You have the parent tag, and the
attributes (or parameters).

The mail() function basically works like this:

mail("recipient","subject","body","headers");

Let's start off by sending a simple e-mail message to yourself. We won't need

Simple PHP

Copyright © 2003 Robert Plank Page 18 of 189

any special headers this time around, so this will be quick and painless. Copy
this one line of code into "mailtest.php":

<?php mail("billg@microsoft.com","Hello","Hi. This is the body of my
message."); ?>

Replace "billg@microsoft.com" with your actual e-mail address, but be
sure to keep quotes around it. Save it, and upload mailtest.php to your web
server and run it in the browser. You should see a blank page. Wait a few
minutes and check your mail. You should see a mysterious mail message in your
box with the subject "Hello" and the message "Hi. This is the body of my
message."

If you're using a free e-mail service or a weird ISP, the message won't come
through because a lot of mail servers these days require that certain headers are
present in the message.

Let's do that now.

What's below isn't important enough to explain thoroughly, but it's just header
information that is interpreted by the mail server. This data tells us that we're
sending a plain text e-mail, that the message came from your e-mail address (and
gives your name), and tells us that the e-mail "client" we used was PHP.

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

This is the code you should have by this point, complete with the header
information and the variables which tell the script what your name and e-mail
address are:

<?php

$email = "billg@microsoft.com";

$myname = "Your Name Here";

Simple PHP

Copyright © 2003 Robert Plank Page 19 of 189

$mymail = "your@email.here";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

mail($email,"Hello","Hi. This is the body of my message.",$headers);

?>

Notice how we've simplified things a bit by using variables in the mail()
function. That way we don't have to retype things. This method also looks better
(in my opinion anyway) and is easier to tweak once you're ready to actually
customize it for yourself.

Try this out again. Believe it or not, but you just made your first
autoresponder! Before we move on let's make this look even cleaner:

<?php

$myname = "Your Name Here";
$mymail = "your@email.here";

$subject = "Hello";
$body = "Hi. This is the body of my message.
Notice how I can continue typing right on the next line!";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

if ($email != "") { mail($email,$subject,$body,$headers); }

?>

All I did here was just make things look nicer, but notice how I removed the line
that set $email to "billg@microsoft.com." This is because the value of $email

Simple PHP

Copyright © 2003 Robert Plank Page 20 of 189

will be passed to the script from that form we made earlier.

This also sends the e-mail message ONLY if the value of $email is not blank. So
if someone just hit the submit button without entering an address, the script won't
try to send the e-mail message.

Everything should be ready for you to try out now. Re-upload "some-script.php"
and go to signup.html. Enter your e-mail address in the field, hit submit and wait
for that mail message to arrive.

There's only one step left to making this autoresponder complete. And that's
sending the user somewhere so they aren't given a blank page.

Find this line in your script:
if ($email != "") { mail($email,$subject,$body,$headers); }

And paste this directly underneath it:
header("Location:http://www.my.host"); die();

Put this in a text file, upload this script and try it out. You'll see that once the
autoresponse message is sent, you're directed to www.my.host (or, whatever you
end up changing my.host to). Now, go ahead and change it to whatever URL
you want to use. Or, use it with a variable so the end result is like this:

<?php

$myredirect = "http://www.my.host/thankyou.html";

$myname = "Your Name Here";
$mymail = "your@email.here";

$subject = "Hello";
$body = "Hi. This is the body of my message.
Notice how I can continue typing right on the next line!";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:

Simple PHP

Copyright © 2003 Robert Plank Page 21 of 189

PHP";

if ($email != "") { mail($email,$subject,$body,$headers); }
header("Location:$myredirect"); die();

?>

Don't forget to change the values above. "http://www.my.host/thankyou.html"
needs to point to the URL where thankyou.html is stored.

You're done.

Assignment

Try this code:
header("Location:mailto:email@my.host?subject=hello");

QUIZ

1. Given this text box in HTML:

<input type="text" name="email" size="30">
If this was submitted to a script using the <form> tags, what would be passed to
the script?
 A: The variable $email, containing whatever is written in the text box.
 B: The variable $text, containing whatever is written in the text box.
 C: The variable $email, containing the value "text".
 D: The variable $text, containing the value "email".

2. Given this HTML code:

Simple PHP

Copyright © 2003 Robert Plank Page 22 of 189

What is the parent tag within this HTML tag?
 A: a
 B: href
 C: link
 D: html

3. What does this code do?
header("Location:http://www.simplephp.com");

 A: It doesn't do anything, it's a fraud.
 B: It outputs the text "Location:http://www.simplephp.com" to the browser.
 C: It redirects to http://www.simplephp.com
 D: It makes a phone call to http://www.simplephp.com and tells him/her to
expect three dinner guests.

4. True or false. This code will execute properly:
<?php mail("shitcan@shit.can", "ergonomics" ,"jell-o pudding."); ?>
 A: True.
 B: False.

5. If this was somewhere in the *header* of an e-mail you were sending:
Content-Type: text/plain; charset=us-ascii\n

What would it do?
 A: Not allow the message to ever leave U.S. soil.
 B: Tell the recipient's e-mail client that the message is in plain text.
 C: It keeps the message from being delivered for 48 hours.
 D: It's kind of like Rush Delivery, but for e-mail.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 23 of 189

Chapter 4 More Autoresponders With
PHP

Last chapter, we learned how to make simple text-only, one-shot autoresponders.

After the article was published, I was asked to teach a method of creating follow-
up responders. You know the type... someone subscribes and receives their
initial message. After a few days, or a few weeks, or even months, another
message in the autoresponder series is mailed out. This is useful if you're
presenting a course that is split it up into many different lessons, which you want
to give someone at a certain pace.

Well, I thought about showing you how to do that this week, but we're really not
at that point yet. If I showed you how to do that, I'd lose most of you entirely.
That's way ahead of us for now.

I was also asked, however, if it were possible to create HTML autoresponders.
And those are quite easy to make.

If you haven't read the last chapter's tutorial, I recommend you do.

Now, this should be the code you have for your autoresponder (your
personalized values will vary). Remember that our script was called "some-
script.php" in our example.

<?php
$myredirect = "http://www.my-domain.name/thankyou.html";

$myname = "Your Name Here";
$mymail = "your@email.here";

$subject = "Hello";

Simple PHP

Copyright © 2003 Robert Plank Page 24 of 189

$body = "Hi. This is the body of my message.
Notice how I can continue typing right on the next line!";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

if ($email != "") { mail($email,$subject,$body,$headers); }
header("Location:$myredirect"); die();
?>

Replace this line:

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

With this one:

$headers = "Content-Type: text/html; charset=iso-8859-1\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

If you look closely, all that we've done is basically changed the file format of the
text we're sending. Upload it to your server and run the script like you did last
time, entering your e-mail address in and submitting the form.

You should notice that the text looks slightly different. Let's make it completely
different.

Replace this code:

$body = "Hi. This is the body of my message.
Notice how I can continue typing right on the next line!";

With this:

Simple PHP

Copyright © 2003 Robert Plank Page 25 of 189

$body = "Look, it's an
HTML message!

<img
src=\"http://www.my.host/gumby.jpg\">";

Re-upload and try now. Look at what you've just done! An HTML
autoresponder, by changing just a few lines of code.

It might also interest you that an e-mail message can be sent using a variety of
file types... not only in text and HTML but also in Rich Text Format.

Now that we've gotten that out of the way, let's move on to putting attachments
in your e-mail autoresponder. Compared to a lot of the stuff we've gone over so
far, this is more complicated.

You're going to learn how to send attachments in e-mail using PHP. Just as we
sent text e-mails before, you'll learn how to attach an image to your message.

This is how you can make those autoresponders that mail the customer the
product or e-book once they've bought. Or it would work as a really creative
way to distribute an article or publication to someone. They might even think
you personally sent the e-mail and the attachment.

Making it isn't going to be easy, though.

Let's start off by creating a whole new script. Let's call it "myscript.php". When
I made my example I just copied the first few lines from some-script.php because
we're going to use them again. So, let's do that:

$myredirect = "http://www.my.host/thankyou.html";
$myname = "Gumby";
$mymail = "null@jumpx.com";
$subject = "Attachment sample";

Of course you can change all of this... but this just sets the variables I'll use later,
my thank you page, from name, from address, and subject.

Next, I'll add my message.

Simple PHP

Copyright © 2003 Robert Plank Page 26 of 189

$message = "Hey! Boy, have I got a file for you.

-Gumby";

This is going to be the plain text message that accompanies the attachment. We
could have gone without one, but since this is an autoresponder after all, I think
we'd better keep a message in with the attachment.

Notice how I called this variable $message and not $body. This will come up
again in a bit.

Next, we'll have to read the file we plan on sending. I haven't showed you file
reading before, but hopefully it won't be too big of a deal. But I'll go over it line
by line.

It's best to think of file reading in this way. Let's say that you are the computer
and all your papers are stored away in a filing cabinet. You want to know what's
on a certain piece of paper, but first you have to take that piece of paper out and
read all the way through it to know what's on that particular piece of
paper. First:

$myfile = "gumby.jpg";

This just declares a variable that gives us the file we want to open. You don't
have to do this, but I normally do just because it looks nicer.

$fp = fopen($myfile,"r");

We just opened up the file "gumby.jpg" (see how we called $myfile?) and
assigned it to the file pointer called $fp. This file pointer is just a way of
representing "gumby.jpg". I don't know how else to explain it in words.

What we want to do next is read all the data in "gumby.jpg" and stash it in a
variable we can use later. So, we do this:

$contents = fread($fp,filesize($myfile));

Simple PHP

Copyright © 2003 Robert Plank Page 27 of 189

What this does is look at our file pointer, $fp. The second parameter in this
function (where it says "filesize($myfile)") tells PHP how far in the file to read.
The filesize() function calculates the exact size of a file. So, let's say our file is
12 kilobytes in size. We want to sweep through all 12 KB of the file.

The contents of the file will be stored in a variable called $contents.

And lastly, we have to put that piece of paper away. So:

fclose($fp);

Closes that file.

So, now we've read an entire file into a variable. Just for fun, open up notepad or
some other text editor you have handy, and open up an image file. Any image
file.

Blechh!

Look at all those weird and funky characters. We need to make that look nicer if
we plan on sending it over e-mail.

E-mail attachments usually use base 64 encoding. I won't go into details about it
right now, but base 64 encoding is just a way of substituting all those weird
characters for nice readable letters.

There's a write-up on base 64 here if you're REALLY curious. But it isn't at all
necessary reading.

http://www.freesoft.org/CIE/RFC/2065/56.htm

Conveniently, though, PHP has a base64 encoding function. So, what we'll do is
take $contents, which contains everything in that image file, and encode it into
base64, storing the new data into a variable called $myimage.

$myimage = base64_encode($contents);

http://www.freesoft.org/CIE/RFC/2065/56.htm

Simple PHP

Copyright © 2003 Robert Plank Page 28 of 189

Now we have the file we want to send in the proper "encoded" format. And now
for the fun part, the headers.

$headers = "From: $myname <$mymail>\nReply-To: <$mymail>\nReturn-Path:
<$mymail>\nBcc: admin@jumpx.com\nX-Mailer: PHP\n";

This line should look familiar to you. It's similar to the header line we had in
some-script.php but without the Content-Type stuff. (You know, the chunk that
told us if we wanted the message in plaintext or HTML.) We'll add the Content-
Type information later.

One thing to note, is that since this is a multi-part MIME message, our entire
message (even the "body") will be contained in the headers. So things might
look a bit messy. You've been warned.

$headers .= "MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=\"myboundary\";
Content-Transfer-Encoding: 7bit\n";

I've split up the contents in $header for easier reading, though. If you see a ".="
and not just a "=", it means that instead of completely filling the variable with
what we're adding, we're ADDING-ON to that variable.

In other words, I could have shown you $headers as one big long ugly string of
text but I split it up so that I could explain each piece of it.

Look at that piece of code above. There isn't much you need to know, just that
these are needed if you plan on doing a multi-part MIME message (which this
is). One thing to notice is the part where it says boundary=\"myboundary\";

You might be wondering what the heck those \" are for. They're just a way of
showing a quotation mark when you're already inside a set of quotation marks.

Example. We've used the echo function before. You can easily have a line of
code that says:
echo "John said hi. Hello there, John said.";

Simple PHP

Copyright © 2003 Robert Plank Page 29 of 189

And it would output:
John said hi. Hello there, John said.

But what if you wanted to show quotes in there? You'd just do this:
echo "John said hi. \"Hello there,\" John said.";

And it would output:
John said hi. "Hello there," John said.

Easy? I hope so.

The purpose of the boundary is to separate each "chunk" of the e-mail message.
Because when this gets to its destination, your recipient's mail client needs a way
of knowing which part is the attachment and which part is your message, right?

Remember for now that our boundary line will be defined by the word
"myboundary."

$headers .= "--myboundary
Content-Type: text/plain; charset=iso-8859-1
Content-Transfer-Encoding: 7bit\n\n";

Aha! And there it is, myboundary in all its glory. Where we say --myboundary
is where we define each part of the message. You can call your boundary
anything from bacon12345 to EatAtJoes. But for this example I just decided on
myboundary.

At the start of each "chunk" of the message, you must set the content-type.
You've seen this part before.

And now, for the actual message.

$headers .= $message."\n";

That just plopped the message we wrote earlier (you know the one... "Hey! Boy,
have I got a file for you.") into the message. Nothing really to see there, but note

Simple PHP

Copyright © 2003 Robert Plank Page 30 of 189

the extra line I added in afterwards. It's important to keep that there.

And now, to lay down our other chunk which contains the file:

$headers .= "--myboundary
Content-Type: image/jpeg; name=$myfile;
Content-Transfer-Encoding: base64
Content-Disposition: attachment

$myimage
--myboundary--";

Pretty easy to understand there. The type is a JPEG, and we're just going to give
it the same name as the actual file (gumby.jpg), it's base64 encoded, and it's an
attachment. Then we go 2 lines down and give it our base64 encoded image.
After that, on the next line, we give out our boundary again. Notice though, this
time, the extra dashes on the end. It's --myboundary-- now, not just --
myboundary. That means we're at the end of the message and there are no more
chunks to deliver.

And the rest is simple!

if ($email != "") { mail($email,$subject,$body,$headers); }
header("Location:$myredirect"); die();

If you decided not to go step by step with me here, this is the source:

<?php

$myredirect = "http://www.jumpx.com/tutorials/3/thankyou.html";

$myname = "Gumby";
$mymail = "null@jumpx.com";

$subject = "Attachment sample";

$message = "Hey! Boy, have I got a file for you.

Simple PHP

Copyright © 2003 Robert Plank Page 31 of 189

-Gumby";

$myfile = "gumby.jpg";
$fp = fopen($myfile,"r");
$contents = fread($fp,filesize($myfile));
fclose($fp);

$myimage = base64_encode($contents);

$headers = "From: $myname <$mymail>\nReply-To: <$mymail>\nReturn-Path:
<$mymail>\nBcc: admin@jumpx.com\nX-Mailer: PHP\n";

$headers .= "MIME-Version: 1.0
Content-Type: multipart/mixed; boundary=\"myboundary\";
Content-Transfer-Encoding: 7bit\n";

$headers .= "--myboundary
Content-Type: text/plain; charset=\"iso-8859-1\"
Content-Transfer-Encoding: 7bit\n\n";

$headers .= $message."\n";

$headers .= "--myboundary
Content-Type: image/jpeg; name=$myfile;
Content-Transfer-Encoding: base64
Content-Disposition: attachment

$myimage
--myboundary--";

if ($email != "") { mail($email,$subject,$body,$headers); }
header("Location:$myredirect"); die();

?>

I've taught you how to send an image as an attachment. But, one last thing

Simple PHP

Copyright © 2003 Robert Plank Page 32 of 189

before we're finished.

I know... that was a lot to take in one chapter, but there is just one last thing.

Chances are if you plan on using an autoresponder like this you'd use it to send
an e-book, an application, whatever... and you probably wouldn't want it in the
form of a JPEG file, am I right?

So we'll just make a simple modification here and set it up to send a zip file
instead.

That is, if you need it.

I'm going to be sending tutorial4.zip as an attachment, instead of using
gumby.jpg. Well, first of all, we have to change the file we plan on using. Find
this line:

$myfile = "gumby.jpg";

And replace it with:

$myfile = "tutorial4.zip";

Next, we have to change the actual type of the file we're sending. So, find this:

Content-Type: image/jpeg; name=$myfile;

And replace it with:

Content-Type: application/zip; name=$myfile;

Now try it. Remember that "image/jpeg", "application/zip" and all these are
MIME types. If you go to the end of this page you'll see a short list of some:
http://www.infomotions.com/waves/mimetypes.html

I don't know where you can find a longer list of MIME types, but you really have
the potential to go anywhere with this. Attach HTML files on-the-fly, text files,

Simple PHP

Copyright © 2003 Robert Plank Page 33 of 189

word documents, MP3s, PDFs, SWFs... just go crazy.

Hopefully the next tutorial won't be as brutal. :-)

Assignment

Choose any file. Upload it up to your web server and create a new script. Make
a new script, called checksize.php, and put this code into it:

<?php
$myfile = "your_chosen_files_name";
echo filesize($myfile));
?>

Change the value of $myfile to your file's name. Upload the script and run it.
Then check the actual size of the file. What does the number returned by
filesize() represent?

QUIZ

1. True or false: Flash can be embedded into e-mail messages.
 A: True.
 B: False.

2. If we have an attachment to put into an e-mail, what format must it be in?
 A: Base 10
 B: Base 64
 C: Base 16
 D: All Your Base Are Belong to Us

Simple PHP

Copyright © 2003 Robert Plank Page 34 of 189

3. What functions are needed if we want to read the contents of a file into a
variable? (Hint: We did it when we attached the file "gumby.jpg".)
 A: open() and read()
 B: fopen() and fattach()
 C: fopen() and fread()
 D: open() and attach()

4. What does ".=" do as opposed to "="?
 A: ".=" adds onto the end of a variable's value while "=" just sets a new value.
 B: There is no difference.
 C: There is no such thing as ".="
 D: None of the above.

5. In e-mail messages, it's possible to mix-in several types of messages in the
same e-mail (e.g. text, HTML, and an attachment all in the same e-mail
document).
 A: True.
 B: False.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 35 of 189

Charpter 5 JavaScript Fun With PHP

Hello! Today I want to have some fun using some JavaScript and PHP tricks.

PHP and JavaScript are a really powerful combination because it's possible to
combine the server-side advantages of PHP with the client-side advantages of
JavaScript. I've used this dual approach to make some really unique yet simple
scripts... a couple of HTML generators, a web-based support chat tool, even a
very basic Opt-In Lightning clone. (You know, those one-click JavaScript
autoresponders.) In this article I'm going to sort of dip into JavaScript a little bit
and show you how to do a few useful things, using PHP as well, of course.

We all want to be available through our web sites. Back in the old days, before
spiders and spam-bots ran back and forth around the net, we'd throw our e-mail
address on our front page so we'd be readily available. Of course that isn't
something you can really do these days, without getting 20 pieces of spam in
your mailbox every day. Sure, there are filters, but with your address getting out
to more and more people, it just becomes a chore.

I think I first saw a solution to this around 3 or 4 years ago. Basically each letter
(and by letter, I mean "character") in the e-mail address is converted into an
ASCII value. If you don't know what this is, don't worry about it. Basically,
computers store letters as numbers. For example, an upper-case "A" is stored as
the number 65, an upper-case "B" as the number 66, and so on.

So, if your e-mail address was, say "some@email.host", if you encoded in it this
way, a sample e-mail link using this address would look like this:

<a href="mailto:some@e
mail.host">
some@emai
l.host">E-Mail Me

Simple PHP

Copyright © 2003 Robert Plank Page 36 of 189

Now, this works even without JavaScript. Which would be nice, but the spam
bots are even smarter these days, and can just as easily harvest the real address. I
wouldn't even bother with it.

As you might expect, a JavaScript solution has arrived. Pretend again that your
address is "some@email.host". If you're at all familiar with e-mail links then
something like this:

<a href="#"
onclick="location.href='mail'+'to'+':'+'some'+unescape('%40')+'email.host';return
false;">E-Mail Me

When a normal user clicks on this, the browser will try to go to the link, the hash
or pound sign (#) you see there, but that will really just make the user stay on the
same page. But then, JavaScript will say, "Ah-ha! They've clicked on that link!"
and do its thing.

If you're familiar at all with JavaScript, you know that the plus sign (+) joins
strings together. Let's take everything inside of the "onclick" parameter in that
link:

location.href='mail'+'to'+':'+'some'+unescape('%40')+'email.host';return false;

And join it together:

location.href='mailto:some'+unescape('%40')+'email.host';return false;

Now, let's see... 40 is the ASCII value of the "at" symbol (@) and the unescape
function in JavaScript just converts ASCII values to understandable characters.
So let's take that part that says "unescape('%40')" and change it to the at sign.

location.href='mailto:some'+'@'+'email.host';return false;

And of course join it all together:

location.href='mailto:some@email.host';return false;

Simple PHP

Copyright © 2003 Robert Plank Page 37 of 189

Now I'll separate this onto multiple lines so it's easier to read:

location.href='mailto:some@email.host';
return false;

This says, take the user to this place (the mailto link) and then stop completely. If
you're familiar with using e-mail addresses in HTML links, putting "mailto:" at
the beginning tells the user's web browser that, oh, it's an e-mail address, and
causes a send window in the user's mail client to open immediately. Which is
exactly what this does.

My line of thinking, however, is... how long will it be until the spam bots figure
even this out? If your web browser can decode that into a clickable link, chances
are that at least a few harvesters already can.

Which brings us to the script you and I are going to make. This is going to be a
JavaScript-based tiny little script that will let people send quick e-mails to
you. "JavaScript?!?", you say? "What in the hell is this? I thought I was
learning PHP?" And you are. But this will be fun.

Of course there are ways to fudge it and send HTML using forms. (What you do
is, have the form submit to an e-mail address instead of a location on the web.)
Furthermore, there are ways to create the HTML invisibly and then send e-mail
using your visitor's HTML client. Personally I don't like this, mainly because
different e-mail clients will do unexpected things when this happens, like
sending the message inside an attachment like "wf7xrb.tmp".

Plus, as should be obvious, your e-mail address is plainly visible like that. What
we want is a way for people to just send us a quick note without them knowing
our address. If you've read the previous chapters you should already know how
to do that, since in the article about autoresponders we covered not only how to
interpret the data someone puts into your script using a form, but also how to use
the mail() function in PHP to actually send mail.

First, you want to know how to make a link to a JavaScript object.

Simple PHP

Copyright © 2003 Robert Plank Page 38 of 189

There's another way to do this, though this method is preferred.

To start off we need a function name. Though we could have something like
"activate()" or "do_now()", I'd like to call it NoteWire.

You can name your function whatever you want to, but I'm calling mine
NoteWire. :-)

Oh, and let's not forget that these names are case sensitive. If you call your
function "NoteWire" and you try to call "notewire", you'll get a JavaScript error.

Now, for the link:

Click on me!

This goes to the function called NoteWire() in your JavaScript code. We don't
have a function called NoteWire() yet, so let's make one:

<script language="JavaScript">
<!--

function NoteWire() {
alert("Hello");
}
// -->
</script>

This JavaScript code can go in between the <HEAD> tags in your HTML
document, inside the <BODY> tags, wherever. Just as long as it's there.

Save or refresh the page if you need to and open it in your browser. If you want
to upload it to your web host, go for it though that's not necessary yet. Click on
that link, and if you've done this right, you should be seeing a popup box that
says "Hello" to you.

Let's think about what information we want from our visitor. Their name, their
e-mail address (so we can reply to them if need be), and of course their message.

Simple PHP

Copyright © 2003 Robert Plank Page 39 of 189

It'll be a short message because they'll only have one line to type on.

Change your JavaScript code to this:

<script language="JavaScript">
<!--

function NoteWire() {

var name = "";
var mail = "";
var message = "";

alert("Hello");
}
// -->
</script>

What we've done here is added three variables, one called "name", one called
"mail", and one called "message". I've filled each of these variables with empty
(blank) values.

Now, to get information from the user. So we'd have something like this:

<script language="JavaScript">
<!--

function NoteWire() {

var name = "";
var mail = "";
var message = "";

alert("Hello");

name = prompt("Your Name:","");
mail = prompt("Your E-Mail Address:","");

Simple PHP

Copyright © 2003 Robert Plank Page 40 of 189

message = prompt("Type your message:","");
}
// -->
</script>

Now, run this code in your browser. When you click on the link, first it will give
you a "Hello", then ask for your name, e-mail address, and message. That's all
nice, but afterwards... it doesn't do anything.

Now it's time to start getting ready to add the PHP part of this script. Since this
is just going to be a really short message someone is sending (under 1000
characters) we could probably get away with just using a query string on it. By a
query string I mean when you have a link such as
"http://host/script.php?firstthing=1&secondthing=2" ... where you give the script
the variables you want based on what you say you want to load.

If you're unfamiliar with using query strings, re-read my first PHP article.

All we have to do for this is take the inputs, and then piece them together in a
string to get the URL we want to load. I'd start by specifying the URL where our
PHP script is *going* to be. We haven't put it up yet, but we're going to
remember where we said it is. So add a line like this:

var myurl = "http://www.my.host/notewire.php";

This is of course assuming that your host is "my.host" and that the script will be
called notewire.php and is on the highest level. You can make this anything you
want as long as you can have a script there.

The next step is figuring out what exactly our completed request will look like,
complete with the script to be requested and the query string. I always use the
alert() function for this, as it shows me almost exactly what we're really going to
see.

Remember that the piece of JavaScript code we looked at earlier used the plus
sign to glue strings of text together. That's what we'll be doing again, like so:

Simple PHP

Copyright © 2003 Robert Plank Page 41 of 189

alert(myurl+"?name="+name+"&mail="+mail+"&message="+message);

Here's what we've built so far.

<script language="JavaScript">
<!--

function NoteWire() {

var name = "";
var mail = "";
var message = "";

alert("Hello");

name = prompt("Your Name:","");
mail = prompt("Your E-Mail Address:","");
message = prompt("Type your message:","");

var myurl = "http://www.my.host/notewire.php";
alert(myurl+"?name="+name+"&mail="+mail+"&message="+message);
}
// -->
</script>

Almost immediately I see a problem with this. If the message contains spaces or
even the "&" symbol, our query string will be all messed up. Again we pull
something out of the JavaScript snippet at the top of the article. Remember
unescape('%40')? Well, we want our data to look something like that, so it'll be
nice and tidy in the query and nothing will go wrong.

So, where you see, say, the variable "name" being outputted, we want
escape(name) so that each character is turned into a number, boxing it up in a
sense. It's kind of like mailing a parcel: you want to be *certain* everything is
boxed up nicely.

You only need to change that last line, so it becomes:

Simple PHP

Copyright © 2003 Robert Plank Page 42 of 189

alert(myurl+"?name="+escape(name)+"&mail="+escape(mail)+"&message="+e
scape(message));

And again, our code so far:

<script language="JavaScript">
<!--

function NoteWire() {

var name = "";
var mail = "";
var message = "";

alert("Hello");

name = prompt("Your Name:","");
mail = prompt("Your E-Mail Address:","");
message = prompt("Type your message:","");

var myurl = "http://www.my.host/notewire.php";
alert(myurl+"?name="+name+"&mail="+mail+"&message="+message);
}
// -->
</script>

Copy this code and save it, then try it. Once you've filled everything out, a new
long query string will pop up. This will be our URL. We will have JavaScript
open this URL for us, giving the data to the PHP script without ever seeing the
target's e-mail address.

There's only one way I know of having JavaScript open a URL *without* a
redirect. It uses the Image object.

If you don't know what an object is, don't worry about it. I like to think of a
specialist, who knows how to do a set of things, but it's lost without your

Simple PHP

Copyright © 2003 Robert Plank Page 43 of 189

guidance. If you need work done on your toilet, you call a plumber. A skilled
plumber comes over, who can do a ton of toilet-related things, but he'll only do
what you tell him to.

I've mostly seen the Image object used to preload images for rollovers. You
know on sites where you put your cursor over an image and it changes to
something else? Well, some people have the image load while your cursor is
over it, while others load the image as the rest of your page is loading, so when
the mouse cursor points to it, the image changes instantly.

First, we need to make a new instance of Image. Let's call it trigger. So:

trigger = new Image();

Then we define a variable in the Image object called "src". "src" is, as you might
have guessed, the source or location of this image we want to open. We already
know exactly what we want to load based on that alert window we have popped
up. So I want you to get rid of that line that has the popup box (the line that uses
the alert function) and change it to this:

trigger.src = myurl+"?name="+name+"&mail="+mail+"&message="+message;

Finally, it's always a good idea to tell an Image object what to do once it's
loaded. Just for fun let's make a new function called "done", and all it does is
popup a box that says "We are done". Add something like:

function done() {
alert("We are done");
}

Remember to create this OUTSIDE the brackets of the NoteWire() function,
because this is a totally new function. Go back up to that line that begins with
"trigger.src" and add this on the line after trigger.src:

trigger.onload = done;

This tells our Image object called "trigger" that, when the image is loaded, to go

Simple PHP

Copyright © 2003 Robert Plank Page 44 of 189

to the function called done(). I know that I left out the parentheses at the end of
that line, that's just fine in this case.

WE'RE NOT FINISHED YET! Unfortunately that's all the time we have for
now. I'll see you next chapter when we create the PHP side of this project, which
does the real work of sending the e-mail we've given to it.

Assignment

No assignment for this chapter. Go back and re-read to make sure all the
JavaScript stuff we've covered makes sense.

QUIZ

1. True or false: JavaScript code needs to be enclosed within the <script> and
</script> tags.
 A: True.
 B: False.

2. Which of the following is true?
 A: PHP scripts run only on the server, while JavaScript is run on the visitor's
machine.
 B: JavaScript runs only on the server, while PHP is run on the visitor's machine.
 C: Both PHP and JavaScript can only be run on the server.
 D: Both PHP and JavaScript can only be run on the visitor's machine.

3. What built-in JavaScript function can be used for a simple "popup message"?
 A: popup()
 B: MsgBox()
 C: alert()
 D: No such function exists.

4. NoteWire is...

Simple PHP

Copyright © 2003 Robert Plank Page 45 of 189

 A: One of JavaScript's many built-in functions.
 B: Something specific to PHP only.
 C: A brand of maple syrup.
 D: Something the author made up.

5. The "glue" for joining strings in JavaScript (*NOT* PHP) is:
 A: The percent sign.
 B: The comma.
 C: The plus sign.
 D: The semicolon.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 46 of 189

Chapter 6 More JavaScript Fun With
PHP

If you didn't read the first half of this book, you really need to. Go back and read
it.

Here's what we should have up to this point:

<script language="JavaScript">
<!--

function NoteWire() {

var name = "";
var mail = "";
var message = "";

alert("Hello");

name = prompt("Your Name:","");
mail = prompt("Your E-Mail Address:","");
message = prompt("Type your message:","");

var myurl = "http://www.my.host/notewire.php";
trigger = new Image();
trigger.src = myurl+"?name="+name+"&mail="+mail+"&message="+message;
trigger.onload = done;
}

function done() {
alert("We are done");

Simple PHP

Copyright © 2003 Robert Plank Page 47 of 189

}
// -->
</script>

Of course if you try this code, you *shouldn't* get that popup that says "We are
done" because there really will not be an image there. We have to put a PHP
script there, to process the query string, and then display an image so JavaScript
can put that alert message there as confirmation.

Open a NEW FILE, and call it "notewire.php" if that's what you decided your
script name should be. The first step is to define who our message will be sent
to. This would usually be your e-mail address:

<?php

$tomail = "your@email.host";

?>

Then, take our data out of the query string, and of course convert it from the
ASCII values into readable text:

$mymail = urldecode($mail);
$fullname = urldecode($name]);
$message = urldecode($message]);

Oh, but it's always a good idea to strip any "friendly" characters out of the body
of your message, so change that last line to:

$message = stripslashes(urldecode($message));

We have the send to address, the send from address, the sender's name, and of
course the body of the message. Sending the e-mail should be small beans if
you're familiar with the mail function from previous articles:

mail($tomail, $subject, $message,"From: $fullname <$mymail>Reply-To:
<$mymail>\nReturn-Path: <$mymail>\nX-Priority: 3\nMIME-Version:

Simple PHP

Copyright © 2003 Robert Plank Page 48 of 189

1.0\nContent-Transfer-Encoding: 8bit\nContent-Type: text/plain; charset = \"iso-
8859-1\"\nX-Mailer: NoteWire");

Then, lastly, to display the image:

header("Content-type: image/gif");
$contents =
"R0lGODlhAQABAIAAAAAAAAAAACH5BAEAAAAALAAAAAABAAEA
AAICRAEAOw==";
echo base64_decode($contents);
die();

This first tells the browser that we're giving it an image (a GIF). What I did here
was, I saved a 1 pixel by 1 pixel transparent GIF image and converted the raw
image data into something that I could store in a script without any weird
characters (base64). If you don't understand anything I've just said in this
paragraph, just know that this is our way of making JavaScript
happy. JavaScript came here looking for an image and it's getting one.

What we have at this point is:

<?php

$tomail = "your@email.host";

$mymail = urldecode($mail);
$fullname = urldecode($name);
$message = stripslashes(urldecode($message]));

mail($tomail, $subject, $message,"From: $fullname <$mymail>Reply-To:
<$mymail>\nReturn-Path: <$mymail>\nX-Priority: 3\nMIME-Version:
1.0\nContent-Transfer-Encoding: 8bit\nContent-Type: text/plain; charset = \"iso-
8859-1\"\nX-Mailer: NoteWire");

header("Content-type: image/gif");
$contents =
"R0lGODlhAQABAIAAAAAAAAAAACH5BAEAAAAALAAAAAABAAEA

Simple PHP

Copyright © 2003 Robert Plank Page 49 of 189

AAICRAEAOw==";
echo base64_decode($contents);
die();

?>

Looks good, so what are we missing? Well, I always like to have a subject. It
seems to me that it would be at least a little bit handy to snag the sender's IP
address, so if anyone decides to send you 100 "quick notes", you at least have
their IP address. Put this under the line that begins with "tomail":

$subject = "NoteWire ($REMOTE_ADDR)";

The final change I'd like to make to this script, is that if someone leaves out their
e-mail address, name, or message, to not display the image. JavaScript won't see
the image and that confirmation popup box won't appear.

So, I want to have an if-statement that makes sure $mymail, $fullname, and
$message are all not empty.

<?php

$tomail = "your@email.host";
$subject = "NoteWire ($REMOTE_ADDR)";

$mymail = urldecode($mail);
$fullname = urldecode($name);
$message = stripslashes(urldecode($message));

if ($mymail != "" && $fullname != "" && $message != "") {

mail($tomail, $subject, $message,"From: $fullname <$mymail>Reply-To:
<$mymail>\nReturn-Path: <$mymail>\nX-Priority: 3\nMIME-Version:
1.0\nContent-Transfer-Encoding: 8bit\nContent-Type: text/plain; charset = \"iso-
8859-1\"\nX-Mailer: NoteWire");

header("Content-type: image/gif");

Simple PHP

Copyright © 2003 Robert Plank Page 50 of 189

$contents =
"R0lGODlhAQABAIAAAAAAAAAAACH5BAEAAAAALAAAAAABAAEA
AAICRAEAOw==";
echo base64_decode($contents);
die();
}

?>

If you've followed these directions well enough, you should be able to click on
the JavaScript link, answer each question, and the message will be delivered to
your inbox. Obviously this isn't an attempt to replace web-based forms by any
means, but to me it is kind of handy if someone needs to send a quick comment,
or some sort of reminder.

If you feel like going back to that JavaScript code of yours and making it just
that much better, close the PHP script and open your HTML document that
contains the JavaScript.

Find this line:
name = prompt("Your Name:","");

And try adding something like this on the line below:
if (!name || name == "" || name == null) { alert("No name given, action
cancelled."); return false; }

Let's do the same for the lines where we gather data for the mail and message
variables as well. Our final JavaScript code here should be:

<script language="JavaScript">
<!--

function NoteWire() {

var name = "";
var mail = "";
var message = "";

Simple PHP

Copyright © 2003 Robert Plank Page 51 of 189

name = prompt("Your Name:","");
if (!name || name == "" || name == null) { alert("No name given, action
cancelled."); return false; }

mail = prompt("Your E-Mail Address:","");
if (!mail || mail == "" || mail == null) { alert("No e-mail address given, action
cancelled."); return false; }

message = prompt("Type your message:","");
if (!message || message == "" || message == null) { alert("No message given,
action cancelled."); return false; }

var myurl = "http://www.my.host/notewire.php";
trigger = new Image();
trigger.src =
myurl+"?name="+escape(name)+"&mail="+escape(mail)+"&message="+escape
(message);
trigger.onload = done;
}

function done() {
alert("We are done");
}
// -->
</script>

That done() function looks like a waste of a function. It would be nice if we
could just have a line like:

trigger.onload = alert("We are done");

But we can't. It EXPECTS a function to be there. So we'd have to put that
inside a Function object, like so:

trigger.onload = new Function(alert("We are done"));

Simple PHP

Copyright © 2003 Robert Plank Page 52 of 189

This might be something you want to use on multiple pages. If that's the case,
take all that JavaScript code and move everything INSIDE the <script> and // -->
</script> tags into a new file. Call it something like "functions.js". So
functions.js should look like this:

function NoteWire() {

var name = "";
var mail = "";
var message = "";

name = prompt("Your Name:","");
if (!name || name == "" || name == null) { alert("No name given, action
cancelled."); return false; }

mail = prompt("Your E-Mail Address:","");
if (!mail || mail == "" || mail == null) { alert("No e-mail address given, action
cancelled."); return false; }

message = prompt("Type your message:","");
if (!message || message == "" || message == null) { alert("No message given,
action cancelled."); return false; }

var myurl = "http://www.my.host/notewire.php";
trigger = new Image();
trigger.src =
myurl+"?name="+escape(name)+"&mail="+escape(mail)+"&message="+escape
(message);
trigger.onload = new Function(alert("We are done"));
}

Then, if we want to use this code on any HTML page, have this there:

<script language="JavaScript" src="functions.js"></script>

That's it. You've just made a sort-of useful script that let's your visitors send you
quick messages. The user stays on that page, there's no redirect, your real e-mail

Simple PHP

Copyright © 2003 Robert Plank Page 53 of 189

address isn't exposed, they don't have to open their e-mail client for the message
to leave their Outbox and actually be sent... it mostly happens on your server.

Now we can think about how a HumanClick-type script could be made... just
have a loop that reloads an Image object in JavaScript every few seconds. If
there's a new message for the visitor, the PHP script on the receiving end shows
the image, and if not, it doesn't. When there IS an image, have JavaScript refresh
to a pop up window where the messages will be contained.

I'm sure if you implemented something like this on a site you could think up
some other uses. For example, let's say you provided some sort of service. Any
service, it doesn't matter what. And only took you a minute or so to provide a
quote for that service.

If you have a way of having it known on your site that you were online, you
could say something like "Your request for a quote has been sent. I will contact
you via e-mail. If you really want to be notified IMMEDIATELY, leave your
browser open and a popup box will appear with your quote." Some people might
leave the browser open and would stay at your site longer. If I were to do this I'd
definitely assign a cookie to the user and then maybe every 10-15 seconds or so
have that image try to reload to see if the quote request for that particular user
has been fulfilled.

Of course that's just one idea. Be sure to send feedback on the chapter, thanks!

Assignment:

We used the variable $REMOTE_ADDR this week to figure out a user's IP
address. Try playing with the variable $HTTP_USER_AGENT and see what
this variable represents.

Simple PHP

Copyright © 2003 Robert Plank Page 54 of 189

QUIZ

1. True or false: The header() function can be used to tell the browser to expect
different types of files (HTML, images, sound, etc.)
 A: True.
 B: False.

2. True or false: PHP scripts can act as images.
 A: True.
 B: False.

3. True or false: It's possible to capture a visitor's IP address using PHP.
 A: True.
 B: False.

4. We saw last week what the "glue" is that can connect strings in
JAVASCRIPT, so what is it in PHP?
 A: The slash.
 B: The comma.
 C: The ampersand.
 D: The period.

5. True or false: JavaScript's escape() and unescape() functions, used for making
text "URL-safe", works the same as which two functions in PHP:
 A: escape() and unescape()
 B: urlescape() and urlunescape()
 C: urlencode() and urldecode()
 D: encode() and decode()

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 55 of 189

Chapter 7 Basic Arrays and PHP

If you've read any of the previous chapters of the book (which you should have),
you'd know already know that variables are ways of storing information. The
simplest way to describe a variable is just that it's a piece of paper. You have a
piece of paper, with a name, say, "brown", and you write the number "5" on it.

<?php

$brown = "5";

?>

Obviously you write the "5" down with a pencil so you can always erase it and
change it to, say, "6" ... or even made it a text value like "bear":

<?php

$brown = "bear";

?>

But of course, you should know this already. You can also do things like set the
value of a variable to an integer instead of a string, but since PHP is a really
forgiving language it's not too important that you know about that yet. What you
will be learning about, are arrays.

So what's an array? If you take a lot of those pieces of paper, and you stuff them
all into a manila folder, that folder is your array. An array is just an organized
set of variables.

Simple PHP

Copyright © 2003 Robert Plank Page 56 of 189

Arrays make it really easy and structured when it comes to more complicated
tasks. For example, back in high school I had a C++ class where one of the
assignments was a Battleship game. If you've ever played the game in real life,
you'd know it involves two boards made up of 9x9 squares.

This gives us 81 squares per board, and since there's two boards that's 162 spaces
to deal with! Could you imagine trying to juggle 162 free-floating variables? I
sure couldn't. But arrays make it easy. Here's a simple array:

$bear[0] = "grizzly";
$bear[1] = "panda";
$bear[2] = "polar";
$bear[3] = "sloth";
$bear[4] = "pooh";
$bear[5] = "paddington";

This is what we call an indexed array. Note that we start at ZERO, not one. This
may seem confusing, but it's a lot easier doing it that way in the long-run.

What we have is the equivalent to a manila folder called "bear" with six pieces of
paper inside. The paper labeled "1" has the word "panda" written on it. The next
piece of paper, "2", has "polar" written on it, and so on.

What's the use? Well, if I have something like:

echo "$bear[4] bear";

It will give me:

pooh bear

That's because we first asked for element number 4 in the array called "bear",
and then added a space followed by "bear". We could do the same for any of the
other elements in this array and say "paddington bear", "polar bear", etc.

So what, then? Well, it's time for a fun little link rotator.

Simple PHP

Copyright © 2003 Robert Plank Page 57 of 189

Start over in a new text file. I want to start off by making an array, of say, five
elements (meaning we go from 0-4) of an array called "links". Each element in
the array will contain one of the possible URLs to send our visitor.

The ultimate goal of this script is to choose a random number, choose that
element in the array, and redirect our visitor there.

Here's where we start our script:

<?php

$links[0] = "http://www.google.com";
$links[1] = "http://www.amazon.com";
$links[2] = "http://www.ebay.com";
$links[3] = "http://www.php.net";
$links[4] = "http://www.theezine.net";

?>

What we have now are the five links we're going to use as random links. It
would be nice to be able to just get a random number between 0 and 4, and plug
it into the array like we did with our "pooh bear" example. Oh, but wait, there is!

Add this to your script (still within the "?>", of course)...

echo rand(1,10);

Upload this to your web host and run it in your browser. (I don't care what you
call it; something like rand.php is fine.)

You should see a random number between 1 and 10. Try refreshing the page. If
the number doesn't change, we're screwed because you're using a slightly out-of-
date version of PHP!

Not to worry, however... there's always a solution. And that's this line:

Simple PHP

Copyright © 2003 Robert Plank Page 58 of 189

srand((double)microtime()*1000000);

Add the above line near the top of your script. You don't need to know what this
is about... this is just important so that it gives a different random number each
time.

All I ask of you now... please please PLEASE don't use srand() more than once.
You only need to seed ONCE in your script, and if you do it more than once you
could really slow things down.

Our script so far:

<?php

srand((double)microtime()*1000000);

$links[0] = "http://www.google.com";
$links[1] = "http://www.amazon.com";
$links[2] = "http://www.ebay.com";
$links[3] = "http://www.php.net";
$links[4] = "http://www.theezine.net";

echo rand(1,10);

?>

So all we have to do is take what rand(1,10) gives us and put it into the array,
right? No, we can't do that because there are 5 elements in the array, not 10... so
what, do we change the 10 to a 5? Well, that's a quick fix but what if we had 20
or 50 or 100 links here?

That's where the count() function comes in. Delete that line that has the
rand(1,10) stuff in there and throw this line in there instead:

echo count($links);

Our modified script:

Simple PHP

Copyright © 2003 Robert Plank Page 59 of 189

<?php

srand((double)microtime()*1000000);

$links[0] = "http://www.google.com";
$links[1] = "http://www.amazon.com";
$links[2] = "http://www.ebay.com";
$links[3] = "http://www.php.net";
$links[4] = "http://www.theezine.net";

echo count($links);

?>

This gives us the number 5, each time. Because there are one, two, three, four,
five elements in that array. If you add more lines into that array (eg, $links[5],
$links[6] and so on...) this number will increase. So, that's how we can figure
out the size of an array.

So, just combine the rand(1,10) and count($links)... we have:

echo rand(1,count($links));

This gives us a random number between 1 and 5... wait, didn't we want it from 0
to 4? Well, no problem then... we just take that random number and subtract it
by one:

echo rand(1,count($links)) - 1;

At this point what I'd do is put this random value into a variable, let's call it
$result. This line changes to:

$result = rand(1,count($links)) - 1;

Then just plug this into $links:

Simple PHP

Copyright © 2003 Robert Plank Page 60 of 189

echo $links[$result];

Our efforts so far:

<?php

srand((double)microtime()*1000000);

$links[0] = "http://www.google.com";
$links[1] = "http://www.amazon.com";
$links[2] = "http://www.ebay.com";
$links[3] = "http://www.php.net";
$links[4] = "http://www.theezine.net";

$result = rand(1,count($links)) - 1;
echo $links[$result];

?>

Upload this and try it. Oops, this just gives us the TEXT of our random
URL. We want to redirect, don't we? Instead of echoing this result, we'll put it
into an HTTP Location header.

<?php

srand((double)microtime()*1000000);

$links[0] = "http://www.google.com";
$links[1] = "http://www.amazon.com";
$links[2] = "http://www.ebay.com";
$links[3] = "http://www.php.net";
$links[4] = "http://www.theezine.net";

$result = rand(1,count($links)) - 1;
header("Location:".$links[$result]);
die();

Simple PHP

Copyright © 2003 Robert Plank Page 61 of 189

?>

Do you see what we did? We added "Location:" to the front, so for example for
"http://www.google.com" we'd get "Location:http://www.google.com". Putting
this inside the function called header() makes sure this is stuffed into the HTTP
headers that are sent.

Bye.

Assignment:

Look up the documentation on arrays at PHP.net and figure out one other way of
putting text into an array. (Hint: If you're still stuck, take a peek at chapter 11.)

QUIZ

1. In PHP, an item stored in an array (eg, $myarray[2]) is usually called a(n):

 A: element
 B: hash
 C: sign post
 D: thingy

2. When generating random variables, srand() should be used...

 A: Never, in the script.
 B: Only once in the script.
 C: Each time you need a new random number.
 D: As many times as possible.

3. True or false: It's possible to take a variable, stick a value into it, and then plug
that variable into an array (like $myarray[$myvariable]).

Simple PHP

Copyright © 2003 Robert Plank Page 62 of 189

 A: True.
 B: False.

4. Indexed arrays start counting at...

 A: NULL.
 B: Zero.
 C: One.
 D: Ten.

5. True or false: Elements in an array act the same as variables.
 A: True.
 B: False.

 Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 63 of 189

Chapter 8 File Handling With PHP

Read the previous chapter. You have to. Now I continue.

We've already played around with a link rotator. That's nice if you have a few
links... but what if you have a huge text file full of links? Or a random tip to
rotate? Or random article or quote?

You can make a simple rotator, of any kind, that reads off a text file, in just a few
lines of code. That's what I really like about PHP; it has a ton of functions (with
names that are actually useful for a change) that do the work for you that you
don't find built-in to most popular languages.

Here's what we made last week:

<?php

srand((double)microtime()*1000000);

$links[0] = "http://www.google.com";
$links[1] = "http://www.amazon.com";
$links[2] = "http://www.ebay.com";
$links[3] = "http://www.php.net";
$links[4] = "http://www.theezine.net";

$result = rand(1,count($links)) - 1;
header("Location:".$links[$result]);
die();

?>

As you recall, it looks at the array, counts it, chooses a random element in it, then

Simple PHP

Copyright © 2003 Robert Plank Page 64 of 189

plugs it back into the array and pukes out that element. Simple.

Even simpler. There's a function built into PHP that reads a text file and puts the
entire file into an array. Each line represents one element of the array.

Take a text file and do this:

hey i am line one
and i am line two
who am I?
you are line three, silly

This will be your database. Save it as, I don't know... "array.txt" and then open a
new file. This will be your script.

header("Content-type:text/plain");
$myarray = file("array.txt");
print_r($myarray);

Save this as array.php, for example. Upload both and run array.php. If you've
done this right, you'll see this:

Array
(
 [0] => hey i am line one

 [1] => and i am line two

 [2] => who am I?

 [3] => you are line three, silly
)

And what's this? All we're doing is reading that text file into an array using the
file() function and storing it in $myarray. Then we display $myarray using the
function print_r();

Simple PHP

Copyright © 2003 Robert Plank Page 65 of 189

print_r() means "print readable" and it takes things that we normally wouldn't be
able to see regularly, like arrays, and make them nice and pretty.

That header("Content-type:text/plain"); I threw in there just makes it so that we
can actually see what's going on.

All that's left now is to do a little borrowing from last week's script to add:

$result = rand(1,count($myarray)) - 1;
echo $myarray[$result];

And that's it. Here's everything:

$myarray = file("array.txt");
$result = rand(1,count($myarray)) - 1;
echo $myarray[$result];

We did all that in just three lines of code!

Well, if you don't mind, I want to add a fourth. One thing I don't like too much
about the file() function, is that it leaves the line feeds in. If you noticed the
pretty picture print_r() drew for us, those lines were double spaced. Well, they
aren't supposed to be double-spaced, but because there's a line feed at the end of
each element, it looks that way.

Change to this:

$myarray = file("array.txt");
for ($i=0;$i<count($myarray);$i++) { $myarray[$i] = trim($myarray[$i]); }
$result = rand(1,count($myarray)) - 1;
echo $myarray[$result];

You'll see I've added in that second line. What's happening there, is the stuff at
both ends are being chopped off. Theoretically if you ran print_r again on that
array you'd see this:

Simple PHP

Copyright © 2003 Robert Plank Page 66 of 189

Array
(
 [0] => hey i am line one
 [1] => and i am line two
 [2] => who am I?
 [3] => you are line three, silly
)

Which is what we want.

Hmm... now what if the quotes we want to rotate are more than one line? That's
a little trickier, but not too hard.

Start over in a new text file. This will be your script. I'm assuming you already
have a text file filled with your favorite multi-line quotes. If you don't, here's a
sample list of quotes I stole:

"Computers in the future may weigh no more than 1.5 tons."
- Popular Mechanics, 1949
%%
"I think there is a world market for maybe five computers."
- Thomas Watson (chairman of IBM), 1943
%%
"640K ought to be enough for anybody."
- Bill Gates, 1981
%%
"There is no reason anyone would want a computer in their home."
- Ken Olson, president, chairman and founder of Digital Equipment Corp., 1977

Paste that stuff into a file called, quotes.txt. "Now wait just a second there,
partner", you say. "What are those percent signs for?" Those double percent
signs are what we use to separate each quote with. Before this, we separated
each quote with a new line, but now PHP needs to know how to distinguish each
quote.

First I would start off by stating what our separator is, and defining what our

Simple PHP

Copyright © 2003 Robert Plank Page 67 of 189

quote file name is.

<?php

$separator = "%%";
$quotefile = "quotes.txt";

?>

Now, in order to get our random quote, I see us taking four steps:

1. Read the contents of the entire file
2. Split up the file (according to our separators) into an array
3. Choosing a random number in the array
4. Plug that random number back into the array

Once you get the hang of this, you'll tend to combine steps three and four. Let's
stick with four steps for now, though.

At this point you really don't know how to read whole files into a string. First,
we have to open the file for reading using the fopen() function.

$fp = fopen($quotefile,"r");

$fp is what we call our file pointer. Once we've opened a file, when we want to
do something to it, we'll do the things we want to do to this variable instead of to
the file directly. Remember though that $fp could have just as easily been
$handle or $garbage or whatever else we wanted to call it.

The second parameter for fopen(), "r", tells PHP that we want to open the file for
reading only. If we want to write or append to the file we'd have to change this.
But luckily, today we're only reading this file.

We defined the value of $quotefile above. It's the file "quotes.txt" if you've
forgotten.

$mytext = fread($fp,filesize($quotefile));

Simple PHP

Copyright © 2003 Robert Plank Page 68 of 189

fread(), as you might have guessed, reads a file. The first parameter is our file
pointer, $fp, while the second parameter is the length we want to read.

Since we want to read the whole, we use the filesize() function to get the length,
in bytes, of the file we want to read. And then just toss that into the second
parameter.

We now have everything in quotes.txt stored in the variable called $mytext. We
won't be needing to play with quotes.txt anymore, so we can just close it:

fclose($fp);

If you're following along, we just finished step one. That was probably the
hardest one.

Step two is really easy. There's another friendly function that will take a string
and chop it up into pieces of an array based on a separator we give it.

$mytext = explode($separator,$mytext);

What I've just done is taken the string $mytext, split its pieces into an array, and
put that array back into $mytext. So now, $mytext has sort of been promoted
from a plain old string into an array.

That was step two.

And we know how to choose a random element in an array, don't we?

$result = rand(1,count($mytext)) - 1;

That was step three.

Then, plug that back into an array so that we really have a random element from
the array.

echo $mytext[$result];

Simple PHP

Copyright © 2003 Robert Plank Page 69 of 189

That was step four. Done.

One thing to note, is that if you're taking your quotes out of a text file and you're
displaying them on an HTML page, things like line feeds won't show up as the
HTML markup you're looking for.

So we just make use of yet another handy PHP function, nl2br(), which takes
those line feeds and puts
 tags in their place.

Here's what we've got:

<?php

$separator = "%%";
$quotefile = "quotes.txt";

// Read the file into the variable $mytext
$fp = fopen($quotefile,"r");
$mytext = fread($fp,filesize($quotefile));
fclose($fp);

// Display a random quote
$mytext = explode($separator,$mytext);
$result = rand(1,count($mytext)) - 1;
echo nl2br($mytext[$result]);

?>

There's your simple random quote script. Want some more useful
stuff? No? Ok, I'll go ahead anyway... ;-)

Let's pretend that you had a file full of quotes, or tips, or recipes, or something,
and you wanted them sorted. It's a good thing that PHP has a sort function.

In this chapter, I can show you how to take that "one line per quote" file and sort
it, then write it back into a file.

Simple PHP

Copyright © 2003 Robert Plank Page 70 of 189

This is what we had...

<?php

$myarray = file("array.txt");
$result = rand(1,count($myarray)) - 1;
echo $myarray[$result];

?>

We'll have to take out those last two lines. We are no longer interested in any
one element of our array. Our task now, instead of showing one output to the
user, is to write this all back into a new, sorted file.

<?php

$myarray = file("array.txt");
sort($myarray);
$myarray = implode("",$myarray);

?>

WHOA! What just happened there? Well, first we took the array and sorted it
alphabetically using the sort() function. Then we used implode(), which does the
exact opposite of explode.

Instead of splitting a string up into an array, we took each piece of an array and
glued it together into one big long string. Now, to write everything we've got.
First I'll define my output file:

$outfile = "output.txt";

And then, open that file for writing, take our finished string and write to it, then
close the file.

$fp = fopen($outfile,"w");

Simple PHP

Copyright © 2003 Robert Plank Page 71 of 189

fwrite($fp,$myarray);
fclose($fp);

If you're doing any of this on a Unix machine be advised that it won't work
unless the proper permissions are set. Meaning you need to do one of two
things:

Either, the folder you plan to write output.txt needs to be chmoded to 0777, or...
the file output.txt needs to be created already and be chmoded to 0777.

Don't know what chmoding is? Chmod lets you change the permissions of a
file. 0777 is fully writeable, which we want because PHP has to be able to write
to this file. Setting permissions changes depending on your FTP client.

I use FlashFXP, and in that you browse to the file you want to set permissions to,
right click and choose "Attributes (CHMOD)" check all the boxes until the
numbered total at the bottom reads "0777", and click OK.

What's the last thing we need to do. Oh. Sorting multi-line quote files. Well,
you take the same approach, and I won't bore you by going through the whole
process again, but here is the completed code:

<?php

$separator = "%%";
$quotefile = "quotes.txt";

// Read the file into the variable $mytext
$fp = fopen($quotefile,"r");
$mytext = fread($fp,filesize($quotefile));
fclose($fp);

// Explode, sort, and implode
$mytext = explode($separator,$mytext);
sort($mytext);
$mytext = implode($separator,$mytext);

Simple PHP

Copyright © 2003 Robert Plank Page 72 of 189

// Write to the file
$fp = fopen($quotefile,"w");
fwrite($fp,$mytext);
fclose($fp);

?>

Assignment

Use the rand() function to simulate the rolling of two dice. (Hint: It's *NOT* a
random number from 1 to 12! It's the sum of two different random numbers each
from 1 to 6...)

QUIZ

1.The file() function...
 A: Tastes like brownies.
 B: Writes whatever you want, into a file.
 C: Reads a file into an array separated by each line.
 D: Reads a file into a variable.

2. print_r() means...
 A: print readable
 B: print recursive
 C: print reverse
 D: print red

3. In article 8, I used this code:
for ($i=0;$i<count($myarray);$i++)

What does it do?

Simple PHP

Copyright © 2003 Robert Plank Page 73 of 189

 A: It looks kind of neat but doesn't have a purpose.
 B: It loops through each element in the array $myarray
 C: It breaks apart the array $myarray, one element at a time.
 D: Makes 12 ounces of black cherry flavored Jell-O gelatin.

4. What function did we use to break apart an array?
 A: break()
 B: separate()
 C: chunk()
 D: explode()

5. What does nl2br() do?
 A: Puts a
 tag at the end of each line so a file is readable in HTML.
 B: Removes a
 tag at the end of each line so a file isn't readable in HTML.
 C: That isn't a function in PHP.
 D: Takes all citizens of the Netherlands and also makes them citizens of Brazil.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 74 of 189

Chapter 9 Anything of the Day With
PHP

For the last few chapters we've been covering arrays. I bet you're sick of them
by now. I know I'm sick of writing about them.

Actually, that's a lie. Arrays are so cool to talk about, because from that topic we
can dip into a ton of different topics. Like the "Anything of the Day" script you
and I will be building, together. Right now.

By "Anything of the Day" I mean quote of the day, tip of the day, this day in
history... those sorts of things people like to put on their web site that changes
daily, without them having to do a thing. *However* the thing about these was
that during the course of that day, our item can't change.

This will be slightly more involved than our random quote scripts. But that's
okay.

A good place as any to start is with a sample quotes file. I've provided one
below:

"Illegitimacy is something we should talk about in terms of not having it."
- Al Gore
%%
"I bet a fun thing would be to go way back in time to where there was going to
be an eclipse and tell the cave men, 'If I have come to destroy you, may the sun
be blotted out from the sky.' Just then the eclipse would start, and they'd
probably try to kill you or something, but then you could explain about the
rotation of the moon and all, and everyone would get a good laugh."
- Jack Handey
%%
"The internet is a great way to get on the net."

Simple PHP

Copyright © 2003 Robert Plank Page 75 of 189

- Bob Dole
%%
"Rarely is the question asked: Is our children learning?"
- George W. Bush
%%
"It isn't pollution that's harming the environment. It's the impurities in our air and
water that are doing it."
- Al Gore

Save this text into a file called "quotes.txt". We start again by reusing old code:

<?php

$separator = "%%";
$quotefile = "quotes.txt";

// Read the file into the variable $mytext
$fp = fopen($quotefile,"r");
$mytext = fread($fp,filesize($quotefile));
fclose($fp);

?>

The first step of course is to split the string into an array using our variable called
$separator:

$mytext = explode($separator);

If you've been paying attention to previous weeks' chapters you'd know that
we've exploded the string $mytext and placed it back into $mytext, "promoting"
$mytext into an array containing each quote.

But now the problem remains, how to have a quote stay constant throughout the
day. Without the luxury of storing any sort of information.

We'll start by experimenting with the mktime() function. This function gives us
the date in a large number... well over one billion. It's actually the number of

Simple PHP

Copyright © 2003 Robert Plank Page 76 of 189

seconds that have elapsed since January 1, 1970 at midnight of your server's time
zone.

This is important to us because it gives us a simple way of manipulating the
date. Let's try experimenting with by adding this to your script:

$date = mktime();
echo $date;

Upload it and run it. You'll see that it gives you that large number. Refresh and
you'll see that the number increases slightly. That's because the seconds are
ticking away.

We need a way of getting the number of *days* that have elapsed since this
date. So, change the above to:

$date = mktime() / 86400;
echo $date;

What have we done, exactly? Well, there's 86,400 seconds in one day. 60
seconds times 60 minutes times 24 hours. That result is the number of days since
1/1/1970. Oh, but wait! It's a decimal number now!

And then we use another handy PHP function. floor() is a math function that
rounds a number down to the nearest integer. We place that around that other
stuff.

$date = floor(mktime() / 86400);
echo $date;

Try this one. You get a number. Refresh and it stays the same. This represents
the number of *whole* days that have elapsed. Which gives us a number that
does not change throughout the day. It only increases when the next day arrives.

The question is, how do we apply this still slightly monstrous number, to our tiny
quotes file of only five entries? Modulus.

Simple PHP

Copyright © 2003 Robert Plank Page 77 of 189

If you don't know what modulus is, it's the fancy way of saying the remainder of
two numbers. For example, 7 modulo 3 equals 1.

For us, modulus is a way of guaranteeing that no matter what the value of $date
is, we'll have a way of representing that number evenly inside any size array.
Our array has five elements so the numbers we want to land inside are 0 through
4. If we progress through each day and apply it to modulo 5...

Day 12098 % 5 = 3
Day 12099 % 5 = 4
Day 12100 % 5 = 0
Day 12101 % 5 = 1
Day 12102 % 5 = 2
Day 12103 % 5 = 3
Day 12104 % 5 = 4
Day 12105 % 5 = 0
Day 12106 % 5 = 1

Get it? No matter what day it is, as day increases by one each time, we will still
see the sequence 0, 1, 2, 3, 4. If we take the modulus of 2 we'd see "0, 1, 0, 1,
etc.". If we take the modulus of 12 we'd see our number go from 0 to 11, start
over, go from 0 to 11, ad nauseum.

Remove the line that gives us echo $date; and stick this in:

$result = ($date % count($mytext));

At this point we have:

<?php

$separator = "%%";
$quotefile = "quotes.txt";

$fp = fopen($quotefile,"r");
$mytext = fread($fp,filesize($quotefile));
fclose($fp);

Simple PHP

Copyright © 2003 Robert Plank Page 78 of 189

$mytext = explode($separator);

$date = floor(mktime() / 86400);
$result = ($date % count($mytext));

?>

Do you see what the next step is? I sure hope so.

echo nl2br($mytext[$result]);

Make sense? We split the string up into an array, get the number of seconds
since 1970, break that down into days, then divide that into the size of our array
so all we're left with remainders ... numbers ALWAYS within the range of the
array.

Final code:

<?php

$separator = "%%";
$quotefile = "quotes.txt";

$fp = fopen($quotefile,"r");
$mytext = fread($fp,filesize($quotefile));
fclose($fp);

$mytext = explode($separator);

$date = floor(mktime() / 86400);
$result = ($date % count($mytext));

echo nl2br($mytext[$result]);

?>

Simple PHP

Copyright © 2003 Robert Plank Page 79 of 189

One drawback is that it's very unlikely you'd start at 0. If you don't care,
fine. But the point of most quotes/sites/tips of the day is to load a bunch of
quotes in and just forget about it.

What we need is a way of telling PHP when Day One was. Then, before we
calculated the number of days since 1970, we would subtract the current date
with the start date. That way, we'd be figuring out the number of days since we
first started.

A local solution for this would be the filemtime() function. This function figures
out the time a file was last saved (by saved, I mean the last time you hit the
"Save" button, *not* the time and date it was uploaded to your host).

So near the top (just before all the date stuff) let's have this:
$startdate = filemtime($quotefile);

Then modify this line:
$date = floor(mktime() / 86400);

And make it do this:
$date = floor((mktime() - $startdate) / 86400);

Of course, this doesn't always work... because what if you make a slight change
or add in more quotes? It'll start right back at zero. So, what I suggest is, where
you have $startdate, actually set the date at which the quotes begin.

This is what we change it to:

$startdate = strtotime("February 15, 2003");

The function strtotime() takes a date in human readable format, anything like "2-
15-2003" or "February 15, 2003" and converts it into the Unix time we can do
math with.

All that's holding you back now from adding a quote, or site, or tip, or whatever
of-the-day to your site is a way to include it in...

Simple PHP

Copyright © 2003 Robert Plank Page 80 of 189

Using PHP: <?php include("path/to/your-script.php"); ?>
Using SSI: <!--#include virtual="path/to/your-
script.php?$QUERY_STRING_UNESCAPED" -->

And lastly, there's one more thing I want to do with arrays. That's a recommend
type of script. You've seen these before. There's a form with a place to enter in
your name, your e-mail address, and then several boxes to add in "friends" with
which to share the site with. Here's some example HTML for you:

<form action="recommend.php" method="post">
<input type="hidden" name="redirect" value="thankyou.html">

Your Name: <input type="text" name="myname" size="30">

Your E-Mail: <input type="text" name="mymail" size="30">

Friend 1 E-Mail: <input type="text" name="friend[]" size="30">

Friend 2 E-Mail: <input type="text" name="friend[]" size="30">

Friend 3 E-Mail: <input type="text" name="friend[]" size="30">

Friend 4 E-Mail: <input type="text" name="friend[]" size="30">

Friend 5 E-Mail: <input type="text" name="friend[]" size="30">
</form>

When this data gets passed into our script, everything will go as smoothly as
you're used to, except for the variable $friend. You've never seen form fields
used like this before... not to worry though. The first address someone enters
will be placed into $friend[0], the next into $friend[1], etc.

I'm looking back onto Week 3 to steal an snippet of code:

<?php

$myname = "Your Name Here";
$mymail = "your@email.here";

$subject = "Hello";
$body = "Hi. This is the body of my message.

Simple PHP

Copyright © 2003 Robert Plank Page 81 of 189

Notice how I can continue typing right on the next line!";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

if ($email != "") { mail($email, $subject, $body, $headers); }

?>

I've named our variables so that most of the work is already done. Remember
this line from last week?

for ($i=0;$i<count($myarray);$i++) { $myarray[$i] = trim($myarray[$i]); }

This loops through the entire array called $myarray. That's what we'll do
here. But this time, we'll be looping through the array called $friend instead, and
we'll be sending an e-mail each time.

Take out this line:

if ($email != "") { mail($email, $subject, $body, $headers); }

And put this in:

for ($i=0;$i<$email;$i++) { mail($email[$i], $subject, $body, $headers); }

Obviously the values of $myname and $mymail will be given to us by the form,
so we can remove the lines that give them values.

Change the value of $subject and $body of course, and you are finished.

<?php

$subject = "Hey I Like This Site";

Simple PHP

Copyright © 2003 Robert Plank Page 82 of 189

$body = "Hey I like this site, it's at www.crap.junk, hurry go there now";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

for ($i=0;$i<$email;$i++) { mail($email[$i], $subject, $body, $headers); }

?>

Have fun playing with those scripts.

Assignment

Look up the strtotime() function on PHP.net and check out the other time formats
you can put into the function (ie, "Now" or "+1 week")

QUIZ

1. What does mktime() do, anyway?
 A: Returns the number of seconds since January 1, 1970.
 B: Returns the number of minutes since January 1, 1970.
 C: Returns the number of microseconds since January 1, 1970.
 D: Returns the number of microminutes since January 1, 1970.

2. What does floor() do?
 A: Just rounds, either up or down.
 B: Always rounds up.
 C: Always rounds down.
 D: Make sure a number is never rounded.

3. What does a hidden input type do?

Simple PHP

Copyright © 2003 Robert Plank Page 83 of 189

 A: Allows us to pass data from an HTML document into a PHP script, without
that data being displayed to the user.
 B: Gives everyone a chance to hide away secret wallets, keys, messages,
documents, etc.
 C: Makes the data passed into a PHP script invisible to that script.
 D: It doesn't do anything, it's useless.

4. What is modulus (%)?
 A: A trigonometric function similar to sine or cosine.
 B: The remainder of some number.
 C: A Roman emperor.
 D: There's no such thing.

5. What does strtotime() do?
 A: Calculates how long a particular string is.
 B: Figures out how much CPU time it takes to process that particular string.
 C: Takes any kind of string, even "ABCDE", and gives it a timestamp.
 D: Takes a date or length of time written in plain English and converts it to Unix
time.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 84 of 189

Chapter 10 Affiliate Script With PHP

Affiliate scripts are surprisingly simple. Some of those with a ton of features
like link tracking, payout management and all that stuff, sell for as much as
$100. Here's a start on your own simple affiliate script.

If you haven't used an affiliate script before, basically what you do is you have a
template page that contains variables such as the affiliate's name, affiliate's e-
mail address, stuff like that. If you use something like PayPal then you might
want to have something like their PayPal address, or if you're using Clickbank
you might want their Clickbank member name.

On the other hand, maybe you're using a different payment processor or handling
payments on your own and you just want to keep track of who made the sale for
you.

Start with an HTML file like this:

Hello, I'm a sample HTML page.

Our affiliate is: <%firstname%> <%lastname%>

My e-mail address is: <%email%>

Here is where I talk about other stuff.
You can call me at <%phone%> during the day.

Maybe we'll have a PayPal button here with credit to <%payment%>...

Save this as sample.html.

Remember that this is just a *sample* page we're using to show how we can
implement fields off a database. Each of our <%things%> are sort of like

Simple PHP

Copyright © 2003 Robert Plank Page 85 of 189

variables, but they're variables that only apply to the current affiliate.

For example, let's say we had a list of 10 different affiliates. We had one, whose
affiliate id was "mickey". His first name was "Mickey", his last name "Mouse",
his e-mail address "mickey@my.host". His phone number is 817-555-1111. His
payment id is 12345.

If someone came to our site and went to page.php?mickey, we'd want Mickey's
info to appear, and not someone else's. Conversely, when a visitor went to
page.php?donald, we would want Donald Duck's info to show and not Mickey's.

Since I want to really make this script reusable, I want to define each field in the
first line of the text file. So we'll have something like this:

id|firstname|lastname|email|phone|payment
donald|Donald|Duck|donald@crappy.host|817-555-1023|dduck
someguy|Bugs|Bunny|aperson@another.host|817-555-6665|wellthen
mickey|Mickey|Mouse|mickey@my.host|817-555-1111|12345
hexagon|Goofy|Man|goof@my.host|817-555-1424|goofie
racecar|Minnie|Mouse|evergreens@crappy.host|817-555-5454

This is our database. Take this text and save it into a file called database.txt. All
our data is separated by pipes (|). On the first line, I define which field is which.

So, looking at the user donald's entry, id equals "donald", firstname equals
"Donald", lastname equals "Duck", email equals "donald@crappy.host", phone
equals "817-555-1023", and payment equals "dduck". Does this make sense? It
does to me.

In previous articles you've seen how to read a file into a string (the hard way) and
also how to read files into an array (the easy way). This time we'll get to do
things the easy way.

To start, define the filename of our database and read that file into an array:

<?php

Simple PHP

Copyright © 2003 Robert Plank Page 86 of 189

$dbfile = "database.txt";
$contents = file($dbfile);

?>

Now, we loop through the array and take out those stupid line feeds at the ends:

for ($i=0;$i<count($contents);$i++) { $contents[$i] = trim($contents[$i]); }

At this point, $contents looks like this:

Array
(
 [0] => id|firstname|lastname|email|phone|payment
 [1] => donald|Donald|Duck|donald@crappy.host|817-555-1023|dduck
 [2] => someguy|Bugs|Bunny|aperson@another.host|817-555-6665|wellthen
 [3] => mickey|Mickey|Mouse|mickey@my.host|817-555-1111|12345
 [4] => hexagon|Goofy|Man|goof@my.host|817-555-1424|goofie
 [5] => racecar|Minnie|Mouse|evergreens@crappy.host|817-555-5454
)

Just to make things easier, let's assume that the affiliate we want is "donald". Of
course we'll take this part out later but it really helps testing-wise.

Add this to the top of your script:

$id = "donald";

Oh, and one other thing I'd like to do is tell PHP what we're using as a separator
(in this case, a pipe):

$sep = "|";

So far all we have is this:

<?php

Simple PHP

Copyright © 2003 Robert Plank Page 87 of 189

$id = "donald";
$sep = "|";

$dbfile = "database.txt";
$contents = file($dbfile);

for ($i=0;$i<count($contents);$i++) { $contents[$i] = trim($contents[$i]); }

?>

And now, we mix in a little regular expressions. Nothing really complicated, just
this:

for ($i=1;$i<count($contents);$i++) {
 if (eregi("^".$id."\\".$sep,$contents[$i])) { $loc = $i; break; }
}

What this does is, first of all, loop through the array. This time it starts at
element *one*, not zero, because the top line is where we defined our field
names.

When we loop through the array, we use the eregi() function, which we use to
find things in a string. The carat (^) we see tells us that what we want has to be
at the beginning. Not only that, but we need to our separator just after the ID
we're looking for.

Note: the dot joins strings together. The dot in front of our separator "\\" is our
way of telling PHP that we want a backslash put in JUST BEFORE the
separator. This is important because we don't want our separator becoming
confused with regular expression notation.

Once we've found what we're looking for, the entry which contains our ID, we
tell PHP to set the value of $loc to the element number where we found what
we're looking for. The break; command tells us to stop looping. Since we've
already found what we're looking for, there's no use in continuing to search.

Now that we've figured out where the entry is, we need to do something with it.

Simple PHP

Copyright © 2003 Robert Plank Page 88 of 189

Here's the next step:

$tmp = explode($sep,$contents[$loc]);

Understand this? We know where the item we want is, so we are taking that and
then splitting it up into an array, our separator being the split point. This array is
put into a new array called $tmp.

The story so far...

<?php

$id = "mickey";
$sep = "|";

// Read the database file into an array and trim

$dbfile = "database.txt";
$contents = file($dbfile);

for ($i=0;$i<count($contents);$i++) { $contents[$i] = trim($contents[$i]); }

// Search the database for the item we want and extract it

for ($i=1;$i<count($contents);$i++) {
 if (eregi("^".$id."\\".$sep,$contents[$i])) { $loc = $i; break; }
}

$tmp = explode($sep,$contents[$loc]);

?>

So, if we ran this, the array called $tmp would contain:

Array
(
 [0] => mickey

Simple PHP

Copyright © 2003 Robert Plank Page 89 of 189

 [1] => Mickey
 [2] => Mouse
 [3] => mickey@my.host
 [4] => 817-555-1111
 [5] => 12345
)

Ouch, but we're working in field *names*, not numbers. Well, it's a good thing
that the first line of the database file contained field names.

What we will do then is the same explode() trick with the separators we did on
this line, but on the top line, like this:

$fields = explode($sep,$contents[0]);

Then simply loop through the array called $fields, look at each value, and then
place each value into a new *associative* array called $data.

I don't think I've explained associative arrays yet. But they're really very
simple. Instead of arranging elements by numbers, they're arranged by
names. For example:

$crap["junk"] = "blah";

By the way, *don't* add the above line to your script. ;-)

Now, we go ahead and do what I just explained:

for ($i=0;$i<count($fields);$i++) {
 $data[($fields[$i])] = $tmp[$i];
}

Now, you're looking at that little line and thinking to yourself, "Eww, icky". Yes
I know. Look at it a couple more times and you'll see that we're just plugging
into the array.

If you could look at the array called $data, you'd see that it's completely worth it,

Simple PHP

Copyright © 2003 Robert Plank Page 90 of 189

because:

Array
(
 [id] => mickey
 [firstname] => Mickey
 [lastname] => Mouse
 [email] => mickey@my.host
 [phone] => 817-555-1111
 [payment] => 12345
)

Look at that beautiful array. It's so easy to read, no crappy numbers. Now we
can start worrying about replacing into our template. (You almost forgot about
that thing, didn't you?)

So, how would we go about doing that? Remember the eregi() function? Lucky
for us, there's a similar function called eregi_replace().

Start off by telling the script what the name of our template file is:

$template = "sample.html";

Then open and read the file (yes, the icky hard way). Don't forget to close the
file since we're done with it after this.

$fp = fopen($template, "r");
$text = fread($fp,filesize($template));
fclose($fp);

Now all that's left is to loop through our shiny new array and replace each
element. Easy, except... oh no, we're using associative arrays now. Gone are the
days of those cozy for() loops. Well don't worry. I've got something even
simpler for you to use now.

That's the foreach() function. Use it like this:

Simple PHP

Copyright © 2003 Robert Plank Page 91 of 189

foreach($data as $key => $value) {
 $text = eregi_replace("<%".$key."%>",$value,$text);
}

What we're doing here is looping through the array, in each step resetting the
value of the variable $key to the current element's name. And of course setting
the value of the variable called $value to the value of the element we're currently
at.

Also, since our variables in the template are in this format:

<%shit%>

We surround each element name with a <% and %>, as you see. Each
replacement is applied back into the variable $text.

Now all that's left is to:

echo $text;

Our script:

<?php

$id = "mickey";
$sep = "|";

// Read the database file into an array and trim

$dbfile = "database.txt";
$template = "sample.html";

$contents = file($dbfile);
for ($i=0;$i<count($contents);$i++) { $contents[$i] = trim($contents[$i]); }

// Search the database for the item we want and extract it

Simple PHP

Copyright © 2003 Robert Plank Page 92 of 189

for ($i=1;$i<count($contents);$i++) {
 if (eregi("^".$id."\\".$sep,$contents[$i])) { $loc = $i; break; }
}

$tmp = explode($sep,$contents[$loc]);
$fields = explode($sep,$contents[0]);

for ($i=0;$i<count($fields);$i++) {
 $data[($fields[$i])] = $tmp[$i];
}

// Apply our results to the template

$fp = fopen($template, "r");
$text = fread($fp,filesize($template));
fclose($fp);

foreach($data as $key => $value) {
 $text = eregi_replace("<%".$key."%>",$value,$text);
}

echo $text;

?>

Not entirely done yet. We need to be able to get the ID from the outside. So, we
remove the line that says:

$id = "mickey";

This way, all we have to do is call the script as "page.php?id=mickey", for
example, if we want "mickey's" affiliate page. But, maybe you want this script
to be more in style of most affiliate scripts, which is in the form of
page.php?mickey. That's easy.

You know up near the top where you deleted that line? Throw this on that spot:

Simple PHP

Copyright © 2003 Robert Plank Page 93 of 189

$id = $QUERY_STRING;

And now for our finished code:

<?php

$id = $QUERY_STRING;
$sep = "|";

// Read the database file into an array and trim

$dbfile = "database.txt";
$template = "sample.html";

$contents = file($dbfile);
for ($i=0;$i<count($contents);$i++) { $contents[$i] = trim($contents[$i]); }

// Search the database for the item we want and extract it

for ($i=1;$i<count($contents);$i++) {
 if (eregi("^".$id."\\".$sep,$contents[$i])) { $loc = $i; break; }
}

$tmp = explode($sep,$contents[$loc]);
$fields = explode($sep,$contents[0]);

for ($i=0;$i<count($fields);$i++) {
 $data[($fields[$i])] = $tmp[$i];
}

// Apply our results to the template

$fp = fopen($template, "r");
$text = fread($fp,filesize($template));
fclose($fp);

foreach($data as $key => $value) {

Simple PHP

Copyright © 2003 Robert Plank Page 94 of 189

 $text = eregi_replace("<%".$key."%>",$value,$text);
}

echo $text;

?>

Assignment:

If you're feeling really ambitious, look up the documentation on fwrite() and
fread()... keep in mind the "a+" mode, which appends to a file.

Now, create an HTML signup form where an affiliate might signup. Take these
results and write them to a text file in the same format your data file for this
week is currently in.

You've just made an affiliate signup script!

QUIZ

1. The difference between indexed arrays and associative arrays is that...
 A: Indexed arrays can contain special characters.
 B: Indexed arrays don't always work properly in PHP.
 C: Indexed arrays contain numbered elements (0, 1, 2, etc.) while associative
arrays contain non-numbered elements (like "toast", "bacon", etc.)
 D: There is no difference between the two.

2. The difference between ereg() and ereg_replace() is...
 A: ereg() only finds a match, ereg_replace() makes a replacement at that match.
 B: ereg() finds matches more frequently than ereg_replace().
 C: ereg() is case sensitive.

Simple PHP

Copyright © 2003 Robert Plank Page 95 of 189

 D: There is no difference between ereg() and ereg() replace.

3. What is the difference between ereg() and eregi()? (Look it up on php.net if
you're not sure.)
 A: eregi() doesn't care if a matching pattern is uppercase or lowercase.
 B: ereg() stops at the first match, but eregi() continues on to the rest.
 C: eregi() does not work with strings.
 D: There is no difference between ereg() and eregi().

4. foreach() as we used it in article 10 is best for looping through...
 A: Indexed arrays.
 B: Associative arrays.
 C: All of the above.
 D: None of the above.

5. The variable $QUERY_STRING gives us...
 A: Everything to the right of the question mark in the URL (eg, script.php?junk)
 B: Everything to the left of the question mark.
 C: Nothing; it's just some other variable.
 D: A list of every string used in our script.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 96 of 189

Chapter 11 Our Knowledge With PHP

If you've been paying attention to the things we've learned so far, you'd know
that there are a lot of new cool things you can make just by applying the
information in these first ten chapters.

Start off with one of those dropdown box URL dropdown boxes...tasty. These
are where you have one of those dropdown menus where a visitor chooses a
location and is promptly redirected to a new URL based on their selection.

We've already seen how you can post HTML form fields into a script. We have
also seen from the article with the link rotator example, how to redirect someone
to a particular URL. All we need to know is this, along with some simple
HTML.

Start by creating the form:

<form action="jump.php" method="post">
<select name="url">
<option value="http://www.google.com">Google</option>
<option value="http://www.yahoo.com">Another link</option>
<option value="http://www.altavista.com">Yet another link</option>
</select>
<input type="submit" value="Go"></input>
</form>

Save this as form.html.

This HTML submits our choice to the script jump.php as a variable called
$url. The value of this variable is the same as that within the value
parameter. For example, the value of "Google" (the first choice) is
http://www.google.com.

Simple PHP

Copyright © 2003 Robert Plank Page 97 of 189

This will be your jump.php:

<?php

header("Location:$url"); die();

?>

As you've seen from our earlier examples, this redirects our visitor to the value
of $url. Since the value of $url *is* the URL we want to redirect to, that's all we
need in the entire script.

That's all you need in your script. Now, we need to make one last change to
form.html.

See this line?

<select name="url">

Change to this:

<select name="url" onchange="location.href=this.value">

This way, if they choose a new item on the dropdown menu, if JavaScript is
enabled, they'll be redirected. This way, however, you can redirect even your
non-JavaScript users.

Next...

A text counter is also something we know how to make. If you recall two weeks
ago, we played around reading and writing to text files. In the same article, we
learned how to call PHP scripts even from our SHTML pages. That will be
useful now.

Start by opening up your text editor. I want you to type in "0" (without the
quotes) and nothing else. Save this as text, as count.txt, and upload to your web

Simple PHP

Copyright © 2003 Robert Plank Page 98 of 189

host. Chmod to 0777 if necessary.

The file count.txt will be used to record how many visitors have been to our site
so far. At this point we just have 0.

The next step is to create our script, counter.php. If you remember from our
random quotes example, here's how to dump the contents of a file into a string:

<?php

$fp = fopen($quotefile, "r");
$mytext = fread($fp,filesize($quotefile));
fclose($fp);

?>

Only, in our case, I'd like us to change the variable that holds our filename to
something that suits our script better, like $countfile.

Also, the second parameter in fopen(), "r", needs to be changed to "w+". Why?
Because this time, we want to open the file for reading *and* writing, not just
reading. Also, we need to take out that line with fclose() because we're not
finished with this file yet.

So we make the changes:

<?php

$countfile = "count.txt";

$fp = fopen($countfile, "w+");
$mytext = fread($fp,filesize($countfile));

?>

Next, it's always a good idea to trim() the variable $mytext just to get rid of any
crap that shouldn't be there. The next step...

Simple PHP

Copyright © 2003 Robert Plank Page 99 of 189

$mytext = $mytext + 1;

This increases the value of the variable $mytext by one.

We write this newfangled value of $mytext back into our file:

fwrite($fp,$mytext);

And finally, close the file...

fclose($fp);

Then output our new counter value:

echo $mytext;

Oh, and if you want to output commas in our counter value (for example, if our
counter is at "2500" and we want to show "2,500"), change that echo line to:

echo number_format($mytext);

That's our text counter! Remember from article 9, the ways to include PHP
scripts using PHP or SSI...

Using PHP: <?php include("path/to/your-script.php"); ?>
Using SSI: <!--#include virtual="path/to/your-
script.php?$QUERY_STRING_UNESCAPED" -->

DONE.

Ooh, the next one is kind of a fun one. A slot machine.

So how do we make a slot machine script? First, we'll have an array. Then,
we'll pick a random value out of that array. We'll do this three times. Then, we
compare our results of the three random tests and see if they match.

Simple PHP

Copyright © 2003 Robert Plank Page 100 of 189

If they do match, we have a winner.

Start by creating a new file. slots.php maybe? Start with an indexed array called
$slots and fill it with some slot machine values:

<?php

$slots[0] = "banana";
$slots[1] = "cherry";
$slots[2] = "grape";
$slots[3] = "lemon";
$slots[4] = "orange";
$slots[5] = "pear";
$slots[6] = "tomato";

?>

Oh, but guess what? When you're just filling indexed arrays like that, there's an
easier way to do this:

$slots = array("banana", "cherry", "grape", "lemon", "orange", "pear", "tomato");

Don't forget to first seed the random number generator (article 7):

srand((double)microtime()*1000000);

Remember, only use srand() ONCE in your script!

Find a random value in the array and assign this to $firstslot.

$firstslot = rand(1,count($slots)) - 1;

Do the same with $secondslot and $thirdslot.

$secondslot = rand(1,count($slots)) - 1;
$thirdslot = rand(1,count($slots)) - 1;

Simple PHP

Copyright © 2003 Robert Plank Page 101 of 189

The next logical step is to show each result:

echo $slots[$firstslot]." ".$slots[$secondslot]." ".$slots[$thirdslot]." ";

And then finally compare each to tell us if the player is a winner or loser:

if ($firstslot == $secondslot && $secondslot == $thirdslot) {
 echo "WINNER!";
}

else {
 echo "LOSER!";
}

Our script:

<?php

$slots = array("banana", "cherry", "grape", "lemon", "orange", "pear", "tomato");

srand((double)microtime()*1000000);

$firstslot = rand(1,count($slots)) - 1;
$secondslot = rand(1,count($slots)) - 1;
$thirdslot = rand(1,count($slots)) - 1;

echo $slots[$firstslot]." ".$slots[$secondslot]." ".$slots[$thirdslot]." ";

if ($firstslot == $secondslot && $secondslot == $thirdslot) {
 echo "WINNER!";
}

else {
 echo "LOSER!";
}

?>

Simple PHP

Copyright © 2003 Robert Plank Page 102 of 189

Upload the script to your web host and run it. Refresh the page to play multiple
times.

How is something like a slot machine useful? The most ingenious
implementation of a script like this was used to collect leads. I don't know who
started this trend, but the idea has been duplicated in autoresponders and refer-a-
friend scripts.

Let's say you decide to give away a prize if they give you their e-mail address.
However, there are two little problems: first, you want them to give you a REAL
e-mail address and not just some random ones, and second, you don't want to
devalue your $50 or $100 product by giving it away any visitor who simply asks.

The great thing about slot machines is that intuitively, people don't realize how
low their odds are. In the example above we have seven symbols in one "reel".
We have three reels, so we have 7 times 7 times 7 possibilities. Totaling 343.

Only 7 of those possibilities will yield wins, leading to 1 win in 49 tries. That
means, on average, for every 49 fresh leads you get, you have to give away one
of those prizes of yours.

Of course if you're sneaky you could throw in some extra random variables. For
example, inside that if-statement:

if ($firstslot == $secondslot && $secondslot == $thirdslot) {
 echo "WINNER!";
}

You could have ANOTHER random value inside of that... say, a random number
between 1 and 2. If the result of THAT random choice was 1, they really win,
but otherwise, have the slot machine go again. This decreases your visitors' odds
to 1 in 98. And of course you can try a random number between 1 and 5, or 1
and 10 or whatever you like. Or even add extra symbols in each reel.

So, how can you be sure that these people give you a valid e-mail address? You
can do all kinds of junk like regular expression filters, or POP3 user

Simple PHP

Copyright © 2003 Robert Plank Page 103 of 189

verification... but the easy way to do it is just to tell your gamblers that their
prize will be sent to them by e-mail.

That way, if they give you a bogus address and they win, they'll sure regret it
because they won't be able to collect their prize!

So, first you need an HTML page to start off on. Call this form.html and have
something like this in it:

<form action="slots.php" method="post">
Enter Your E-mail Address to Play: <input type="text" name="email"
size="30">

<input type="submit" value="Play Slots">
</form>

This will put the player's e-mail address, in the variable called $email, into our
script.

Looking back on article 3, we have this code:

$myname = "Your Name Here";
$mymail = "your@email.here";

$subject = "Hello";
$body = "Hi. This is the body of my message.
Notice how I can continue typing right on the next line!";

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

if ($email != "") { mail($email,$subject,$body,$headers); }

Well hey, we can reuse this, can't we? If they win, send them their
congratulations message complete with a download link:

<?php

Simple PHP

Copyright © 2003 Robert Plank Page 104 of 189

// Run the slot machine
$slots = array("banana", "cherry", "grape", "lemon", "orange", "pear", "tomato");

srand((double)microtime()*1000000);

$firstslot = rand(1,count($slots)) - 1;
$secondslot = rand(1,count($slots)) - 1;
$thirdslot = rand(1,count($slots)) - 1;

echo $slots[$firstslot]." ".$slots[$secondslot]." ".$slots[$thirdslot]." ";

// If they win, send the e-mail with download link.
if ($firstslot == $secondslot && $secondslot == $thirdslot) {

 $myname = "Your Name Here";
 $mymail = "your@email.here";

 $subject = "Hello, you played slot machines and won my prize";
 $body = "Hey you won, great... download link here.";

 $headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

 if ($email != "") { mail($email,$subject,$body,$headers); }

 echo "WINNER! Your prize is in your e-mail.";
}

// If not, thank them for playing.
else {
 echo "LOSER!";
}

?>

Simple PHP

Copyright © 2003 Robert Plank Page 105 of 189

Is that it? Of course not. We need to make sure they don't play over and over
again, so we record the e-mail address each time. So create a text file, call it
emails.txt, upload, and chmod to 0777 so we can write to it.

A first good step is to see if the e-mail address they gave us is even there, or how
about if it contains an "at" (@) sign, using those handy regular expressions:

if (!eregi("\@",$email)) { echo "Sorry, you didn't give me a valid e-mail
address."; }

The cool thing about this is that if someone puts in a blank address, there still
won't be an @ sign so blank e-mail addresses won't work either!

Trim the value of $email just in case...

$email = trim($email);

Record what our file is going to be...

$ourfile = "emails.txt";

We need to check and see if this person has played using this e-mail address
before. I know, I know... the most "efficient" way would be to use fopen()
because we'll be writing back into the file in a minute, but using file() is a lot
easier.

$check = file($ourfile);

Then loop through and take out all the line feeds:

for ($i=0;$i<count($check);$i++) {
 $check[$i] = trim($check[$i]);
}

Then just see if this address has been used before:

if (in_array($email,$check)) {

Simple PHP

Copyright © 2003 Robert Plank Page 106 of 189

 echo "Sorry, this address has been used before."; die();
}

Notice that since die() is in there, if they'd played before, the script will refuse to
continue on. Which is what we want. Now we write this address to our text file
so that we know this address has been used.

Open our file, emails.txt for writing (remember, this is w).

$fp = fopen($ourfile, "w");

Then write this address, followed by a new line (which is represented in PHP by
\n).

fwrite($fp,$email."\n");

And close.

fclose($fp);

Here's what we've got now:

<?php

// Make sure this is a valid e-mail address
if (!eregi("\@",$email)) { echo "Sorry, you didn't give me a valid e-mail
address."; }

$email = trim($email);
$ourfile = "emails.txt";

// Check to see if this address has been used before

$check = file($ourfile);

for ($i=0;$i<count($check);$i++) {
 $check[$i] = trim($check[$i]);

Simple PHP

Copyright © 2003 Robert Plank Page 107 of 189

}

if (in_array($email,$check)) {
 echo "Sorry, this address has been used before."; die();
}

// Write this new address into a text file
$fp = fopen($ourfile, "w");
fwrite($fp,$email."\n");
fclose($fp);

// Run the slot machine
$slots = array("banana", "cherry", "grape", "lemon", "orange", "pear", "tomato");

srand((double)microtime()*1000000);

$firstslot = rand(1,count($slots)) - 1;
$secondslot = rand(1,count($slots)) - 1;
$thirdslot = rand(1,count($slots)) - 1;

echo $slots[$firstslot]." ".$slots[$secondslot]." ".$slots[$thirdslot]." ";

// If they win, send the e-mail with download link.
if ($firstslot == $secondslot && $secondslot == $thirdslot) {

 $myname = "Your Name Here";
 $mymail = "your@email.here";

 $subject = "Hello, you played slot machines and won my prize";
 $body = "Hey you won, great... download link here.";

 $headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

 if ($email != "") { mail($email,$subject,$body,$headers); }

Simple PHP

Copyright © 2003 Robert Plank Page 108 of 189

 echo "WINNER! Your prize is in your e-mail.";
}

// If not, thank them for playing.
else {
 echo "LOSER!";
}

?>

Now, let's say when they played this game, you wanted to add that address into
your newsletter. After all, that's why you're capturing the leads, isn't it? So why
not save yourself the chore...

I actually got this idea partly from Bill Humes who wanted me to make a custom
script for him and I couldn't believe I hadn't thought of it sooner. But... most
autoresponders just wait for an e-mail to be sent to them, and adds the address of
the sender to the list.

Ever since chapter 3 we've known how to send e-mail, right? Not only that, but
we've known how to specify the sender and the receiver for any e-mail we send.
So why not take the e-mail we've just been given, and send it to our
autoresponder address?

It'll treat the mail the same way as a normal subscription request, and this way,
you can put the address right into your autoresponder, using the autoresponse
software you already use. Look here:

$sysmail = "my@auto.responder";

Let's set $sysmail to whatever your autoresponder address is. We have to define
what our headers are, of course, so just steal this from our script example above:

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

Simple PHP

Copyright © 2003 Robert Plank Page 109 of 189

Oops, but we'll have to change this so that it comes from $email and not from
[$mymail], won't we? So that becomes this:

$headers = "Content-Type: text/plain; charset=us-ascii\nFrom:
<$email>\nReply-To: <$email>\nReturn-Path: <$email>\nX-Mailer: PHP";

Then just send our e-mail. It's always important to have *something* in the
body, so I'll just throw in a couple of line feeds and newline characters
(represented by PHP as \r\n:

mail($sysmail, "", "\r\n\r\n",$headers);

There! Now, our visitor plays slots, and if he or she was won, they'll be e-mailed
the URL to pick up their prize. But they were also subscribed to your
autoresponder or newsletter. Our completed code:

<?php

// Make sure this is a valid e-mail address
if (!eregi("\@",$email)) { echo "Sorry, you didn't give me a valid e-mail
address."; }

$email = trim($email);
$ourfile = "emails.txt";

// Check to see if this address has been used before

$check = file($ourfile);

for ($i=0;$i<count($check);$i++) {
 $check[$i] = trim($check[$i]);
}

if (in_array($email,$check)) {
 echo "Sorry, this address has been used before."; die();
}

Simple PHP

Copyright © 2003 Robert Plank Page 110 of 189

// Write this new address into a text file
$fp = fopen($ourfile, "w");
fwrite($fp,$email."\n");
fclose($fp);

// Run the slot machine
$slots = array("banana", "cherry", "grape", "lemon", "orange", "pear", "tomato");

srand((double)microtime()*1000000);

$firstslot = rand(1,count($slots)) - 1;
$secondslot = rand(1,count($slots)) - 1;
$thirdslot = rand(1,count($slots)) - 1;

echo $slots[$firstslot]." ".$slots[$secondslot]." ".$slots[$thirdslot]." ";

// If they win, send the e-mail with download link.
if ($firstslot == $secondslot && $secondslot == $thirdslot) {

 $myname = "Your Name Here";
 $mymail = "your@email.here";

 $subject = "Hello, you played slot machines and won my prize";
 $body = "Hey you won, great... download link here.";

 $headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";

 if ($email != "") { mail($email,$subject,$body,$headers); }

 echo "WINNER! Your prize is in your e-mail.";
}

// If not, thank them for playing.
else {
 echo "LOSER!";

Simple PHP

Copyright © 2003 Robert Plank Page 111 of 189

}

$sysmail = "my@auto.responder";
$headers = "Content-Type: text/plain; charset=us-ascii\nFrom: $myname
<$mymail>\nReply-To: <$mymail>\nReturn-Path: <$mymail>\nX-Mailer:
PHP";
mail($sysmail, "", "\r\n\r\n",$headers);

?>

So, you think, couldn't someone abuse this thing by just putting a ton of other
people’s addresses into the slot machine form? Well of course... but that's why
you have double opt-in... :-)

Assignment:

We've discussed ways of "rigging" the slot machines to make it harder to win...
think up some ways of alterng your code to make it EASIER to win instead.

QUIZ

1. This line of code:
$fp = fopen($ourfile,"w");
Opens the file called $ourfile for:
 A: Reading only.
 B: Writing only.
 C: Reading and writing.
 D: ... all to see.

2. What is the difference between "\r" and "\n"?

Simple PHP

Copyright © 2003 Robert Plank Page 112 of 189

 A: "\r" means carriage return, "\n" means newline.
 B: "\r" means newline, "\n" means carriage return.
 C: "\r" is "\n" plus one.
 D: No difference, they are exactly the same.

3. What must we do if we want a file to be writeable by PHP?
 A: Make sure the file contains the number "3".
 B: Chmod the file to 0777.
 C: Chmod the file to 0600.
 D: Upload in ASCII instead of BINARY.

4. What function did we use in article 11 to see if a particular value existed
within an array?
 A: in_array()
 B: check_array()
 C: inarray()
 D: array()

5. What does the trim() function do?
 A: Deletes the entire string.
 B: Changes the name of the variable containing the string.
 C: Eliminates whitespace (extra spaces, line feeds, carriage returns, etc.) from
the ends of a string.
 D: Keeps the size of a string down.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 113 of 189

Chapter 12 Cookie Fun With PHP

The last chapter left off with me briefly discussing about how one might abuse
that precious lead-gathering slot machine script of ours... and how to prevent
things like that.

It got me thinking to list different ways of preventing people from abusing the
slot machine, such as recording each IP address to make sure the same one
couldn't play twice, or to set a cookie...

A cookie...

A cookie.

What a great chapter idea. Cookies.

And I'm not talking about chocolate chip. A common analogy to cookies are dry
cleaning tickets. When you bring clothes into the dry cleaning place, they give
you a ticket stub with a number on it. You come at a later time with that stub
and give it to the man behind the counter to get those same clothes back. This is
sort of how a cookie works.

We've set, unset, and changed variables countless times in PHP. Cookies are
variables that are stored on a visitor's computer. This is handy for us because we
will be able to identify them when they return later (even if "they" are, say, on a
dial-up connection where their IP might change).

So, you want to get started already. That's good. This is an example of setting a
cookie:

header("Set-Cookie:brown=bag;expires=Tuesday, 1-Jan-1980 00:00:00

Simple PHP

Copyright © 2003 Robert Plank Page 114 of 189

GMT;domain=.my.domain;\n\n");

If you've ever looked at the PHP Manual online, you'd know that PHP does
indeed have a setcookie() function. I don't use it, because they're a headache to
get working and the way setcookie() does things have been known to cause
problems with IE 5.5 and Netscape 4.x.

Now, to break down that HTTP header I sent:

Set-Cookie:
brown=bag;
expires=Thursday, 1-Jan-2004 00:00:00 GMT;
domain=.my.domain;

It already makes a lot more sense now that I've split it up a little, doesn't it?

First, we need to specify our cookie name and its value. In this example, the
cookie's name is brown and its value is set to bag.

The next piece is pretty explanatory. All cookies need to expire eventually. If
you want to be a smartass and have your cookie last (almost) forever, go ahead
and set it to January 1, 2037.

But most of the time you'll have a reason for letting a cookie expire. For
example, if you have some sort of script where a user has to login, and you use
cookies for this, it's a good idea to ask them to login again a couple of hours
later.

The expiration date on a cookie has to be set in the way I've defined above.

And lastly, domain tells the user's browser what domain this cookie will be
defined to. If you leave this out, the browser will just assume the current
domain. This is what we call a "Bad Thing".

Why? Well, say your site is at http://your.host and you set a cookie, without
specifying a domain. Then, your visitor goes to http://www.your.host and you
try to access the cookie. It might look the same to you, but the browser says

Simple PHP

Copyright © 2003 Robert Plank Page 115 of 189

"Oh, that isn't the right domain for that cookie."

The solution, is to put a dot in front of the domain. So in the case of your.host,
set the cookie to .your.host. That way, the cookie will be applied not only to
your domain, but to all its subdomains (yes, kids, the "www" before your domain
name does indeed count as a sub).

So, let's say we want to set a cookie to expire 20 minutes from now. How will
we do it? Well, for starters, let's declare what our domain (e.g. microsoft.com)
is. DON'T FORGET THE DARN DOT AT THE BEGINNING!

<?php

$mydomain = ".some.domain";

?>

Next we need the timestamp of 20 minutes from now, in Unix epoch time
(remember that big long number from chapter 9 generated from the date?), so we
just use our buddy strtotime():

$datevalue = strtotime("+20 minutes");

Let's look back on that piece of the cookie now:

expires=Thursday, 1-Jan-2004 00:00:00 GMT;

That number needs to be formatted like that. Which we'll format using gmdate().

$expire = gmdate("D\, d M Y H\:i\:s",$datevalue);

gmdate() gives us the value of the date in Greenwich Mean Time (GMT), taking
the numeric value from $datevalue and making it into a string the cookie can
understand.

Then put our domain and this expiration date into that first cookie example I
gave you:

Simple PHP

Copyright © 2003 Robert Plank Page 116 of 189

header("Set-Cookie:brown=bag;expires=$expire
GMT;domain=$mydomain;\n\n");

All our code here for setting a cookie:

<?php

$mydomain = ".some.domain";
$datevalue = strtotime("+20 minutes");
$expire = gmdate("D\, d M Y H\:i\:s",$datevalue);

header("Set-Cookie:brown=bag;expires=$expire
GMT;domain=$mydomain;\n\n");

?>

Done. We've now set a cookie called "brown" and set its value to "bag". It's
valid for our domain name only and it will expire 20 minutes from when it was
set.

Now, let's modify the same script to erase the cookie. How we erase? Simple...
just set the expiration date to a date before today's date. The "proper" date to set
is of course, January 1st 1970, which is "0" in Unix time.

January 1 1970 12:00 AM and 1 second, is 1 in Unix time.
January 1 1970 12:00 AM and 2 seconds, is 2 in Unix time.

Get it?

<?php

$mydomain = ".some.domain";
$datevalue = 0;
$expire = gmdate("D\, d M Y H\:i\:s",$datevalue);

header("Set-Cookie:brown=bag;expires=$expire

Simple PHP

Copyright © 2003 Robert Plank Page 117 of 189

GMT;domain=$mydomain;\n\n");

?>

I've changed $datevalue to 0 and our cookie is now gone. Yes, sometimes we
want to delete cookies.

BUT REMEMBER THIS: Whenever you change a cookie, be *sure* to clear it
first. Just because.

What's so good about this? Well, from any script you run on your domain, you
can take the variable $brown and it will be set to "bag" until you change it or it
expires. So, you could keep a user's login "sticky" so to speak, for a certain
amount of time... or have your page personalized for that person forever.

In fact, let's take cookies all the way back to chapter 1. You remember chapter
one, don't you? Personalizing your pages?

We called our script like this:

http://your.host/script.php?f=Elmo

And then, once we displayed our page, we had:

Dear <?php echo $f; ?> ,

Hey, this is a sample page. Fun, isn't it? Do do do do do do do do do do do...

start off by telling PHP our domain, and how long we want the cookie to last.
Let's just say one year.

<?php

$mydomain = ".some.domain";
$last = "1 year";

?>

Simple PHP

Copyright © 2003 Robert Plank Page 118 of 189

Start off by setting our expiration date to 0 because we want to clear the cookie.
Then actually clear the cookie.

$expire = gmdate("D\, d M Y H\:i\:s",0);
header("Set-Cookie:f=null;expires=$expire GMT;domain=$mydomain;\n\n");

Now that the cookie is gone, we can feel to *set* our cookie now.

$datevalue = strtotime("+".$last);
$expire = gmdate("D\, d M Y H\:i\:s",$datevalue);

header("Set-Cookie:f=$f;expires=$expire GMT;domain=$mydomain;\n\n");

NOT FINISHED YET! But here's what there is so far...

<?php

$mydomain = ".some.domain";
$last = "1 year";

// Erase the cookie that's there
$expire = gmdate("D\, d M Y H\:i\:s",0);
header("Set-Cookie:f=null;expires=$expire GMT;domain=$mydomain;\n\n");

// Set the new cookie
$datevalue = strtotime("+".$last);
$expire = gmdate("D\, d M Y H\:i\:s",$datevalue);

header("Set-Cookie:f=$f;expires=$expire GMT;domain=$mydomain;\n\n");

?>

The last thing we need to do is... make sure that $f actually contains something!
The point of this is to make the cookie when $f is actually there, you see?

When $f has a value, we make the cookie, so that when it's accessed later by the

Simple PHP

Copyright © 2003 Robert Plank Page 119 of 189

same person when $f has no value, our script will just grab that from the cookie.

So, we need to surround all of this with an if-statement, checking to make sure
that $f actually contains something.

Also, don't forget to take all this and stick it at the top of script.php.

<?php

if ($f != "") {

 $mydomain = ".some.domain";
 $last = "1 year";

 // Erase the cookie that's there
 $expire = gmdate("D\, d M Y H\:i\:s",0);
 header("Set-Cookie:f=null;expires=$expire GMT;domain=$mydomain;\n\n");

 // Set the new cookie
 $datevalue = strtotime("+".$last);
 $expire = gmdate("D\, d M Y H\:i\:s",$datevalue);

 header("Set-Cookie:f=$f;expires=$expire GMT;domain=$mydomain;\n\n");

}

?>

Dear <?php echo $f; ?> ,

Hey, this is a sample page. Fun, isn't it? Do do do do do do do do do do do...

Now upload and load the script like this:

http://your.host/script.php?f=Elmo

Then, take out the personalized part...

Simple PHP

Copyright © 2003 Robert Plank Page 120 of 189

http://your.host/script.php

If you've done everything right, the name "Elmo" should remain. You've just
made your first script using cookies!

There are a few things to remember about cookies before I go...

First, as I explained earlier, you can't read or write cookies from other domains
(so if a user goes to apple.com and that site sets a cookie, you won't even be able
to see it.

Cookies are useless your cookies are disabled (or blocked) on your visitor's
browser.

Cookies will reset if your visitor decides to clear his or her browser cache.

Cookies don't carry over onto other browsers or to other computers.

And, most importantly, cookies won't show up until a new page is loaded! So, if
you set a cookie called "eskimo" to the value "pie", you won't be able to read it
until your visitor clicks through to another page (or reloads that same page).

The end.

Assignment

What happens to your cookie if the format of the expiration date is changed
around?

Simple PHP

Copyright © 2003 Robert Plank Page 121 of 189

QUIZ

1. How can a cookie be deleted?
 A: Using a special function to delete cookies.
 B: Set the cookie's date to a point more than a year into the future.
 C: Set the cookie's date to a point in the past.
 D: Cookies can't be deleted, once a cookie is made it's there to stay.

2. What does date() do?
 A: Gives us the date, in Unix time.
 B: Formats a Unix timestamp into a readable date.
 C: Nothing.
 D: Everything.

3. What's the difference between date() and gmdate()?
 A: date() gives us the time elapsed since 1/1/1970 in *seconds*, while gmdate()
gives us milliseconds.
 B: date() is crispier than gmdate().
 C: date() gives us a formatted date in Greenwich Mean Time, gmdate() is only
the local time.
 D: gmdate() gives us a formatted date in Greenwich Mean Time, date() is only
the local time.

4. True or false: It's recommended to delete a cookie before giving a new value
to it.
 A: True.
 B: False.

5. True or false: Cookies don't take effect until a new page is loaded (or the
current page is reloaded).
 A: True.
 B: False.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 122 of 189

Chapter 13 Comparison With PHP

So... we've played with cookies, we've played with flat-text databases, arrays, file
handling, and lots of other fun crud. What's next? Well, we've totally skipped
over if-statements. Which I think are important, but boring.

But I think this quiz example might be kind of fun.

All right... if-statements let you do some basic logic. If you're familiar with just
about any programming language this is known to you already.

Otherwise, well, you learned about inequalities at school, right? For example:

5 > 4

This says "5 is greater than 4". When I learned this in the fourth grade, the
teacher drew little teeth on the angle because "the mouth is pointing at the 5,
which is bigger than 4, and the alligator is hungry."

This also works the other way, like:

3 < 4

We can also have "less than or equal to" operators, such as:

6 <= 6

Is 6 less than or equal to 6? Well, it's equal to 6, so yes.

And of course there's an equality operator, which is this:

Simple PHP

Copyright © 2003 Robert Plank Page 123 of 189

4 == 4

Notice how in PHP we use two equals signs (==).

This is useful in a situation like this:

<?php

$x = 5;

if ($x > 6) { echo "YES IT IS BIGGER THAN 6"; }
else { echo "Darn... it is not bigger than 6."; }

?>

If $x is greater than 6, we say "YES IT IS BIGGER THAN 6". Otherwise, we
show the other disappointing message.

You won't have to worry about greater than or less than for this article, but they
are good to know.

In this article we'll be making a fun little quiz! And, we will be relying on the
equality operator (the two equals signs) to see if the answers a person gives us
match the real answers.

Since we've gotten as far as we have, I plan on using not only comparisons, but
also file handling, string/array manipulation and a little basic math. Maybe some
really simple regular expressions too. Just putting together things you already
should know.

Here's a sample quiz file:

1: According to the five kingdom view of life, how many kingdoms are there?
A: 3
B: 5
C: 7
D: 9

Simple PHP

Copyright © 2003 Robert Plank Page 124 of 189

2: Is "none of the above" a good answer?
A: Sometimes
B: Always
C: All of the above
D: None of the above

3: Two plus three is...
A: Five
B: Seven
C: I don't count that high
D: Let me get my calculator

4: Excrement is...
A: Blue
B: Brown
C: Orange
D: Depends on the time of day

5: True or false. A three hour tour.
A: True
B: False

Save this as questions.txt. This will be our data file of questions. Only this time,
instead of using pipes (|) as was our previous example, in article 10, our
separator is "a colon followed by a space" or ": ".

This is to show that you can really use any separator you like. Just make SURE
that any separators you use aren't re-used in places they aren't supposed to be
(like as parts of actual questions or answers). If that happens... the whole thing
will be messed up. So don't.

We need to start over with a new file... called quiz.php. Start off by reading the
contents of questions.txt into a variable called $data, then closing the file.

This should be a pretty easy task for you at this point.

Simple PHP

Copyright © 2003 Robert Plank Page 125 of 189

<?php

$qfile = "questions.txt";

$fp = fopen($qfile,"r");
$data = fread($fp,filesize($qfile));
fclose($fp);

?>

Now we need to use explode() to split up the contents of this file. What will our
separator be? Two newline characters (\n).

Depending on how you upload your text file to your FTP server, a line feed
could either be represented by \n or \r\n. So first we need to take out all the
\r's. That is, if they exist anyway...

$data = eregi_replace("\r","",$data);

Then explode this string into an array based on what separates each number from
the other...

$data = explode("\n\n",$data);

Right now, $data would look like this:

Array
(
 [0] => 1: According to the five kingdom view of life, how many kingdoms are
there?
A: 3
B: 5
C: 7
D: 9
 [1] => 2: Is "none of the above" a good answer?
A: Sometimes
B: Always

Simple PHP

Copyright © 2003 Robert Plank Page 126 of 189

C: All of the above
D: None of the above
 [2] => 3: Two plus three is...
A: Five
B: Seven
C: I don't count that high
D: Let me get my calculator
 [3] => 4: Excrement is...
A: Blue
B: Brown
C: Orange
D: Depends on the time of day
 [4] => 5: True or false. A three hour tour.
A: True
B: False
)

For now let's just play with $data[0]...

$tmp = $data[0]

The variable $tmp looks like this:

1: According to the five kingdom view of life, how many kingdoms are there?
A: 3
B: 5
C: 7
D: 9

What we've got to do now is use explode() on this string and split it up by each
line. So let's say:

$tmp = explode("\n",$tmp);

Now $tmp looks like:

Array

Simple PHP

Copyright © 2003 Robert Plank Page 127 of 189

(
 [0] => 1: According to the five kingdom view of life, how many kingdoms are
there?
 [1] => A: 3
 [2] => B: 5
 [3] => C: 7
 [4] => D: 9
)

We know that the first line, that is, $tmp[0], is the question we want to ask. So
we say:

echo $tmp[0];

Which gives us this:

1: According to the five kingdom view of life, how many kingdoms are there?

This takes care of asking the question, but what about our visitor choosing an
answer? This is where our little bit of HTML knowledge with radio buttons
come in. If you don't know HTML that well, I'll take you through an example
real quick.

Pretend that you're submitting to a form, and the variable you want to be called
$greek with the options "alpha", "beta", "gamma", and "delta". You would have
something like this:

<input type="radio" name="greek" value="alpha"> my first option

<input type="radio" name="greek" value="beta"> my second option

<input type="radio" name="greek" value="gamma"> my third option

<input type="radio" name="greek" value="delta"> my fourth option

Understand how this works? The first radio button says "greek equals alpha",
the second says "greek equals beta", etc. The stuff written after the radio button
doesn't matter, it's just there to tell our visitors what exactly they're clicking on.

Now, on to creating our HTML form.

Simple PHP

Copyright © 2003 Robert Plank Page 128 of 189

Instead of echoing $tmp[0], let's try looping through it, then at each step,
exploding THAT and outputting each question:

echo "
";

for ($j=1;$j<count($tmp);$j++) {
 echo $tmp[$j]."
";
}

We get:

1: According to the five kingdom view of life, how many kingdoms are there?
A: 3
B: 5
C: 7
D: 9

So, how do we take those options and turn them into radio buttons? Easy...
change that loop to this:

for ($j=1;$j<count($tmp);$j++) {
 $button = explode(": ",$tmp[$j]);
 echo "<input type=\"radio\" name=\"question\" value=\"$button[0]\">
$button[1]
";
}

See, it rips apart *that* piece by our separator and then takes the first half, and
uses it as our HTML value, then shows the whole thing to our visitor.

You know, just for the sake of writing clean code, change all the
 in our
script so far to
\n.

Here's the whole thing so far in case you missed it:

<?php

Simple PHP

Copyright © 2003 Robert Plank Page 129 of 189

$qfile = "questions.txt";

$fp = fopen($qfile,"r");
$data = fread($fp,filesize($qfile));
fclose($fp);

$data = eregi_replace("\r","",$data);

$data = explode("\n\n",$data);

$tmp = $data[0];

$tmp = explode("\n",$tmp);

echo $tmp[0];

echo "
";
for ($j=1;$j<count($tmp);$j++) {
 $button = explode(": ",$tmp[$j]);
 echo "<input type=\"radio\" name=\"question\" value=\"$button[0]\">
$button[1]
\n";
}

?>

Try it, upload to your web server and go.

NOTE NOTE NOTE! That certain browsers (i.e., Netscape) are picky about
showing form elements where an actual <form> tag is not defined. So be
warned, that as this stands now it may not preview well in Netscape.

Now, view the source of that HTML and you'll see this:

1: According to the five kingdom view of life, how many kingdoms are
there?

<input type="radio" name="question" value="A"> A: 3

<input type="radio" name="question" value="B"> B: 5

Simple PHP

Copyright © 2003 Robert Plank Page 130 of 189

<input type="radio" name="question" value="C"> C: 7

<input type="radio" name="question" value="D"> D: 9

Hey! That worked out pretty well now, didn't it? Only one problem, though... it
only does the first question in questions.txt, now, doesn't it? That's because of
this line:

$tmp = $data[0];

If we looped through the array $data instead of just giving its *first* value to
$tmp, we could take care of all the questions. This part can get kind of
tricky. We want to loop through the array, and each time, give the current
sequence to the variable $tmp, and then do everything else.

<?php

$qfile = "questions.txt";

$fp = fopen($qfile,"r");
$data = fread($fp,filesize($qfile));
fclose($fp);

$data = eregi_replace("\r","",$data);

$data = explode("\n\n",$data);

for ($i=0;$i<count($data);$i++) {

 $tmp = $data[$i];
 $tmp = explode("\n",$tmp);

 echo $tmp[0];

 echo "
";
 for ($j=1;$j<count($tmp);$j++) {
 $button = explode(": ",$tmp[$j]);
 echo "<input type=\"radio\" name=\"question\" value=\"$button[0]\">

Simple PHP

Copyright © 2003 Robert Plank Page 131 of 189

$button[1]
\n";
 }
}

?>

Get what we did here? We put a loop around another loop, which I know can
seem confusing at first... but, just think we did everything the same as with the
first question, only we took that same process and went through each and every
question.

The only problem is that all the options will be named "question". Which is a
bad thing, because our script won't be able to tell the difference between, say
question #1 and question #2. So on this line:

echo "<input type=\"radio\" name=\"question\" value=\"$button[0]\">
$tmp[$j]
\n";

Instead of naming our radio button "question", we name it "question[$i]". This
way all the radio buttons on the first question will be called question[0], the
buttons on the next will be question[1], all through our questions.

While we're at it, add another "
\n" at the end of each "$i" loop, so it looks
nicer.

Our code:

<?php

$qfile = "questions.txt";

$fp = fopen($qfile,"r");
$data = fread($fp,filesize($qfile));
fclose($fp);

$data = eregi_replace("\r","",$data);

Simple PHP

Copyright © 2003 Robert Plank Page 132 of 189

$data = explode("\n\n",$data);

for ($i=0;$i<count($data);$i++) {

 $tmp = $data[$i];
 $tmp = explode("\n",$tmp);

 echo $tmp[0];

 echo "
";
 for ($j=1;$j<count($tmp);$j++) {
 $button = explode(": ",$tmp[$j]);
 echo "<input type=\"radio\" name=\"question[$i]\" value=\"$button[0]\">
$button[1]
\n";
 }
 echo "
\n";
}

?>

Ok, now we've got to actually tell our form to submit somewhere. So up at the
top, we put this in:

echo "<form action=\"finish.php\" method=\"post\">";

And then, at the end, we put in our submit button and close the form:

echo "<input type=\"submit\" name=\"submit\" value=\"Done\"></form>";

Now we're all good as far as being able to read the questions and options. Now,
we take care of the answers.

Now create an answer file. Let's call this answers.txt.

What delimiter do you want to use for this? Pipes? Nah, let's just have a
separate answer on each line. Put the answers in the file like this:

Simple PHP

Copyright © 2003 Robert Plank Page 133 of 189

B
D
A
B
A

Save as answers.txt. Now, on to the final step of this. Start off by setting our
separator and our answer file.

<?php

$sep = ": ";
$answer = "answers.txt";

?>

Next, we can use the file() function since each entry is on its own line, which
saves headaches...

$data = file($answer);

Then of course loop through and strip out the excess junk...

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
}

Now to compare the data. If you could see what was being passed into
finish.php you'd see this:

[question] => Array (
 [0] => B
 [1] => A
 [2] => A
 [3] => A
 [4] => B
)

Simple PHP

Copyright © 2003 Robert Plank Page 134 of 189

Hey, an array. We know how to handle loops with those thingies, now don't
we? So, what I would do is just loop through the array containing the file and
compare those to the answers.

Like this:

for ($i=0;$i<count($data);$i++) {
 if ($data[$i] == $question[$i]) { echo "You got question $i right.
\n"; }
 else { echo "You got question $i wrong.
\n"; }
}

What we've got:

<?php

$sep = ": ";
$answer = "answers.txt";

$data = file($answer);

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
}

for ($i=0;$i<count($data);$i++) {
 if ($data[$i] == $question[$i]) { echo "You got question $i right.
\n"; }
 else { echo "You got question $i wrong.
\n"; }
}

?>

I tried it out, answering the questions randomly and got this as a result:

You got question 0 right.
You got question 1 wrong.
You got question 2 right.

Simple PHP

Copyright © 2003 Robert Plank Page 135 of 189

You got question 3 wrong.
You got question 4 wrong.

Question ZERO?! Uh oh. Got to fix that. So we go to these two lines:

if ($data[$i] == $question[$i]) { echo "You got question $i right.
\n"; }
else { echo "You got question $i wrong.
\n"; }

Now, we want to say $i plus one, that way we can say question 1, question 2, and
so on. It changes to this:

if ($data[$i] == $question[$i]) { echo "You got question ".($i+1)." right.
\n";
}
else { echo "You got question ".($i+1)." wrong.
\n"; }

Make sense? We had to take the $i stuff out of the quotes, then surround with
parentheses and add a "+1" to the end.

Now heed your attention to this part of the code:

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
}

for ($i=0;$i<count($data);$i++) {
 if ($data[$i] == $question[$i]) { echo "You got question ".($i+1)."
right.
\n"; }
 else { echo "You got question ".($i+1)." wrong.
\n"; }
}

Hey... seems like a little bit of a waste doesn't it? Looping through that array
twice. So we can compress it down to this:

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
 if ($data[$i] == $question[$i]) {
 echo "You got question ".($i+1)." right.
\n";

Simple PHP

Copyright © 2003 Robert Plank Page 136 of 189

 }
 else {
 echo "You got question ".($i+1)." wrong.
\n";
 }
}

Woo hoo!

<?php

$sep = ": ";
$answer = "answers.txt";

$data = file($answer);

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
 if ($data[$i] == $question[$i]) {
 echo "You got question ".($i+1)." right.
\n";
 }
 else {
 echo "You got question ".($i+1)." wrong.
\n";
 }
}

?>

Now I'm betting you want to be able to tell the person, "You got 2 out of 5
correct" or, "Hey there, you got 40% right."

Assignment

If you're feeling ambitious again, try and figure out a way to give our visitor his
or her percentage *before* looking at the next chapter.

Simple PHP

Copyright © 2003 Robert Plank Page 137 of 189

QUIZ

1. The statement 5 > 7 will return...
 A: True.
 B: False.

2. True or false: When using flattext files, we can only use one type of delimiter
(eg, pipes or spaces).
 A: True.
 B: False.

3. filesize($somefile) gives us...
 A: The size of the current file, in bytes.
 B: The size of the file $somefile, in bytes.
 C: The size of all files in the directory called $somefile.
 D: Nothing.

4. Why do we always have to loop through the array we generated as a result of
file() and trim() each element?
 A: file() is just a crappy function.
 B: file() was designed to work with trim().
 C: file() separates each line of a file but doesn't get rid of newline characters.
 D: An array made from file() isn't really an array until we've trimmed() each
element.

5. What does count($myarray) give us?
 A: A total of the number of elements contained within $myarray.
 B: A list of all elements within $myarray.
 C: The array $myarray, only it's sorted properly.
 D: The exact same array we began with.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 138 of 189

Chapter 14 Loops With PHP

Hello. Hmm. So what are we going to do today? Last chapter we did that nifty
quiz that we made together. What good's a quiz on your site? Well, maybe if
you gave some sort of prize or other incentive for answering all the questions
correctly it would be good.

For example, your questions could be things like, "How many bonuses come
with my product?" or, "How many testimonials are on the front page?" Some
people will just hunt around for the answers, yes, but there's a chance you might
make a sale along the way. :-)

And... you could even borrow code from that slot machine script from article 11
to require their e-mail address for a chance to win...

Anyway, last week we had this script:

<?php

$sep = ": ";
$answer = "answers.txt";

$data = file($answer);

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
 if ($data[$i] == $question[$i]) { echo "You got question ".($i+1)."
right.
\n"; }
 else { echo "You got question ".($i+1)." wrong.
\n"; }
}

?>

Simple PHP

Copyright © 2003 Robert Plank Page 139 of 189

What we had was... one script that read from a question file and generated an
HTML form, which then submitted that information to a second script which
read from an answer file and compared the answers.

We wanted the ability to be able to tell our test taker "you got X number of
questions wrong" or "you got X% wrong". Something like that.

So, what we'd have to do is keep a counter, and up that counter by one each time
they get a question right.

Start off by making your counter variable. We start at 0. Let's just call it $count.

$count = 0;

Then, find this line:

if ($data[$i] == $question[$i]) { echo "You got question ".($i+1)." right.
\n";
}

And put $count++; inside of it. This tells $count to increase by 1.

if ($data[$i] == $question[$i]) {
 echo "You got question ".($i+1)." right.
\n";
 $count++;
}

Then, outside the loop, output the result of $count:

echo $count;

This is what we have:

<?php

$sep = ": ";
$answer = "answers.txt";

Simple PHP

Copyright © 2003 Robert Plank Page 140 of 189

$data = file($answer);
$count = 0;

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
 if ($data[$i] == $question[$i]) {
 echo "You got question ".($i+1)." right.
\n";
 $count++;
 }
 else { echo "You got question ".($i+1)." wrong.
\n"; }
}

echo $count;

?>

So, I took the quiz and picked a few answers, some right, some wrong, and it
gave me this:

You got question 1 right.
You got question 2 wrong.
You got question 3 right.
You got question 4 wrong.
You got question 5 wrong.
2

That "2" tells us that we've got 2 correct. But maybe we want to say, "You got 2
out of 5 correct." So we change:

echo $count;

To this:

$total = count($data);
echo "
\nYou got $count correct out of $total.";

Simple PHP

Copyright © 2003 Robert Plank Page 141 of 189

The result is:

You got question 1 right.
You got question 2 wrong.
You got question 3 right.
You got question 4 wrong.
You got question 5 wrong.

You got 2 correct out of 5.

And what about a percentage? That's easy too... just a little bit of simple math.
Change that block to:

$total = count($data);
$percentage = ($count / $total) * 100;
echo "
\nYou got $percentage percent out of $total questions.";

If you understand how to get a percentage of your score, you divide the number
you got right by the total number of questions we had... and multiply that by 100.
The asterisk (*) is the multiplication symbol and the slash (/) is our division
symbol.

Done.

<?php

$sep = ": ";
$answer = "answers.txt";

$data = file($answer);
$count = 0;

for ($i=0;$i<count($data);$i++) {
 $data[$i] = trim($data[$i]);
 if ($data[$i] == $question[$i]) {
 echo "You got question ".($i+1)." right.
\n";
 $count++;

Simple PHP

Copyright © 2003 Robert Plank Page 142 of 189

 }
 else { echo "You got question ".($i+1)." wrong.
\n"; }
}

$total = count($data);
$percentage = ($count / $total) * 100;
echo "
\nYou got $percentage percent out of $total questions.";

?>

That example script is done with. We aren't going back to it anymore. Now it's
time for some delicious loops. No, not Fruit Loops, just plain ole loops.

When you need the same thing done over and over and over... don't worry, that's
what computers are good at. Take something like this for example:

<?php

echo "hello ";
echo "hello ";
echo "hello ";
echo "hello ";
echo "hello ";

?>

Isn't there an easier way to do that? Well, of course... that's the bread and butter
of loops. In PHP you'll find three kinds of loops: for loops, while loops, and do-
while loops. Once you get the hang of them you'll see that all three are nearly
identical.

You've already seen us use for loops to pass through arrays, doing something
like this:

for ($i=0;$i<count($something);$i++) {
 echo "some text";
}

Simple PHP

Copyright © 2003 Robert Plank Page 143 of 189

Let's pay special attention that first line:
for ($i=0;$i<count($something);$i++)

And now to look at the parameters of for.

($i=0;$i<count($something);$i++)

Each step is separated by colons. The first piece:

$i=0;

Tells PHP to set the value of $i to zero when we start this. That's all there is to
it.

The next piece...

$i<count($something)

Yum, another one of those lovely inequalities. This tells us that we should
remain in this loop only as long as this works. I know this can be a little
confusing... but if this piece was something like...

$i<10

This says to keep us in the loop as long as the value of $i is less than 10. If $i is
10, or higher than 10, the loop is over and we continue through the program.

So why do we stick count() in there when looping through arrays? Well, say we
have an indexed array of 12 elements. The value from count() we get is 12, but
each element is in the array starting from zero, so we need to count from 0 to 11.

Well hey, it's starting to fit together isn't it? Start at 0, continue as long as we are
below 12... but aren't we missing something here?

Yes, we are. And that's the third piece.

Simple PHP

Copyright © 2003 Robert Plank Page 144 of 189

$i++

I think I used this once before, and this means "increase the value of $i by
one". Saying:

$i++;

...is the exact same thing as saying:

$i = $i + 1;

So what's the third piece do? Whatever is in the third piece, gets performed
every time we go through the loop.

Now that we know what everything does, let's pretend we're using a block of
code like this:

for ($i=0;$i<20;$i++) {
 echo $i." ";
}

What will this code do? Well, it'll start at 0. The second piece says, keep
looping until we reach 20, and the third piece says to increase $i by one each
time we make another pass through the loop.

It goes through the loop once and $i is 0. It echoes $i so we see "0". Increase $i
by one. Now $i is 1, we echo it so we see "1".

This continues until we reach 19 (remember, we continue as long as $i is LESS
THAN, not equal to, 20) and then we're out of the loop. What gets outputted is
this:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Want to count from 1 to 50, showing each step as it goes through? Do this:

for ($i=1;$i<=50;$i++) {

Simple PHP

Copyright © 2003 Robert Plank Page 145 of 189

 echo $i." ";
}

Here, we begin counting at 1 and continue as long as $i is less than or equal to
50. If we get to 51, we're bust.

Remember how I told you there were THREE kinds of loops in PHP? Heh heh.
Don't worry, these other two are amazingly simple.

Let's take our for loop up there, that counts from 1 to 50, and turn it into a while
loop:

$i=0;

while ($i<=50) {
 echo $i." ";
 $i++;
}

While loops take up lots more space, but they're easier to understand (probably
also easier for you to make at the moment). The only thing a while loop needs to
do its job is the information that would normally go into the 2nd chunk of a for
loop. That is, "Keep at it until this doesn't hold any longer."

So, outside the while loop we first set $i to 0. Then, we tell the loop to keep
going until $i is no longer less than or equal to 50. (Meaning $i will have to be
LARGER than 50 not to continue.)

If we just left it at that, though, our loop would never end. Hence the need for
the $i++; you see in there, to increase $i by one each time. (Of course nothing's
stopping you from saying "$i = $i + 2;", in any loop...)

Two down, one to go. The last kind of a loop is what's called a "do-while" loop.
Probably a big change, huh? A totally different way of writing a loop...

Well, no, not at all. You see that while loop code above us? I'll change it into a
do-while loop for ya:

Simple PHP

Copyright © 2003 Robert Plank Page 146 of 189

$i=0;

do {
 echo $i." ";
 $i++;
}
while ($i<=50);

Poof.

The only difference between a while loop and a do-while loop is just that the
while() part goes after the loop.

So what the hell are loops good for anyway? It's just counting. Yes, but
counting with which you can do very cool things. Like what? Well hey, when I
first "learned" PHP, the first lil' thing I made was a cool calendar. Sound fun? It
is.

Let's go.

Assignment

You've seen a ton of ways to count *up* with all kinds of loops, now I want you
to see if you can figure out how to make them count *down*.

QUIZ

1. What does $george++ do?
 A: Nothing, that causes at error.
 B: Doubles the value of $george.

Simple PHP

Copyright © 2003 Robert Plank Page 147 of 189

 C: Decreases the value of $george by 1.
 D: Increases the value of $george by 1.

2. Let's say the value of $truck is 5. Consider this code:
$truck = $truck * 10;
What is the value of $truck now?
 A: 50.
 B: 15.
 C: 510.
 D: 2.

3. How many different kinds of loops did we cover in Chapter 14?
 A: One.
 B: Two.
 C: Three.
 D: Four.

4. The slash (/) symbol does:
 A: Division.
 B: Modulus.
 C: Multiplication.
 D: Exponentation.

5. Consider the code:
for ($c=1;$c<20;$c=$c*2) {
echo "$c ";
}[/php]

This would give you:
 A: 1 2 4 8 16 32
 B: 1 2 4 8 16
 C: 1 2 3 4 5 ... 20
 D: 1 2 3 4 5 ... 19

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 148 of 189

Chapter 15 A Calendar With PHP

So, I promised that I'd show you how to use your newfound knowledge in loops
to make a calendar, just like the one I made when I was a PHP newbie.

Well, sort of like mine. Mine had some extra mySQL database stuff in it, that
took me a long time to get working the way I wanted it to. (Hey, cut me a break,
it was my first shot at PHP.) I'll get you there eventually, let's just take this one
step at a time...

We're to make a calendar. What good is a calendar? You can use the calendar as
part of a database and use it to announce events, use it as a task manager. If you
run a newsletter you can use it to link to archived issues. Think up anything that
uses a time or date, and you can use a calendar with it.

First we need to think about how we're going to approach the problem. Since
this is going to be output in HTML, we'll need to put everything into an HTML
table. If you don't know the HTML markup for tables, that's okay, but it really
helps you to understand this if you do.

The simplest thing we can start off doing is drawing a calendar for a single
month. So, what we need to know from PHP's date() function is, how many days
are in the month, and on what day of the week does our month begin (for
example, September 1st, 2003, begins on a Monday).

Once we have this information we can draw out our calendar. Once we have this
we'll be able to create a calendar for any month of the year, for any year from
1970 to 2038.

A quick review of HTML tables in case you aren't educated on them... the table
itself is opened and closed using the <table> and </table> tags. Each row is
defined with the <tr> tag (TR stands for Table Row), and each cell within that

Simple PHP

Copyright © 2003 Robert Plank Page 149 of 189

row is defined using <td> (TD stands for Table Cell... and yes, I know "cell"
doesn't start with a D).

You must have the same number of cells in each row on the same table, or the
table will look broken on some browsers. Here's a sample table, 2 columns wide
and 3 rows long. I've made the table's border equal to "1" so that you can
actually see the table.

<table border="1">
 <tr>
 <td>Row 1, Column 1</td>
 <td>Row 1, Column 2</td>
 </tr>

 <tr>
 <td>Row 2, Column 1</td>
 <td>Row 2, Column 2</td>
 </tr>

 <tr>
 <td>Row 3, Column 1</td>
 <td>Row 3, Column 2</td>
 </tr>
</table>

And of course if I want to produce a 2 x 3 table with empty cells, I'd put
" " inside each cell. Why? Well, some browsers don't like empty cells, so
they don't show the cell at all. This is bad. But (which is like a space
that is treated as a real character) is our way of making the tables *look* empty,
while allowing them to remain visible.

Our 2 x 3 *blank* table:

<table border="1">
 <tr>
 <td> </td>
 <td> </td>

Simple PHP

Copyright © 2003 Robert Plank Page 150 of 189

 </tr>

 <tr>
 <td> </td>
 <td> </td>
 </tr>

 <tr>
 <td> </td>
 <td> </td>
 </tr>
</table>

Now, the next step is figuring out how we can draw a table of any given
size. What I mean by this is, how can we just tell PHP that we want, for
example, 7 columns and 4 rows of table? Using loops?

I'll give you a second to think about it.

Stumped? Yes, no? If you think back to our tip of the day script (chapter 9) it
might seem a little easier.

Back then I introduced modulus, otherwise known as remainder, which as you
remember was useful in a very specific way. Back then it was good for letting
our tip of the day change only *once* per day. This time it'll be useful for
keeping the dates of the month (1, 2, 3, etc.) within the boundary of days of the
month (Monday, Tuesday, Wednesday, etc.)

Let's start by saying how many rows and how many columns we'd like. Let's just
call these variables $rows and $cols so we know what they are.

<?php

$cols = 7;
$rows = 4;

?>

Simple PHP

Copyright © 2003 Robert Plank Page 151 of 189

Then, start the table:

echo "<table border=\"1\">\n";

Next, multiply the number of columns and rows to figure out what the total
number of cells in the table will be. (This will come in handy later.)

$total = $cols * $rows;

Begin our loop.

for ($i=0;$i<$total;$i++) {

When creating HTML tables we can't just say how many columns we'd like. We
have to specify where the breaks are. We have to do something like this:

if ($i % $cols == 0) { echo "<tr>\n"; }

Here we say, that if the value of $i at this point (remember we're counting from 0
to 27 here) has a remainder zero, create a new row.

When does a number have remainder zero? When it's divisible by the number of
columns. In our case, 7.

In a 4 x 7 table, those numbers are: 0, 7, 14, 21... hey... that makes the table
break and start in a new row after every 7th cell. Just what we want!

When we start a new row though, we want to end the previous one. So we have
to put this line ABOVE the previous one:

if ($i % $cols == 0) { echo "</tr>\n\n"; }

Now, put this line in after it:

echo "<td>$i</td>";

Simple PHP

Copyright © 2003 Robert Plank Page 152 of 189

This puts the value of $i (our counter) inside each cell.

End the loop (meaning put the other bracket in there. And of course end the
table.

echo "</table>";

Our code up to this point:

<?php

$cols = 7;
$rows = 4;

$total = $cols * $rows;

echo "<table border=\"1\">\n";
for ($i=0;$i<$total;$i++) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }
 echo "<td>$i</td>";
}

echo "</table>";

?>

Upload and try it out. You should have a table with 4 rows. The top row counts
from 0 to 6, the second from 7 to 13, all the way up to 27. (Making a total of 28
since we started counting at 0).

I see two problems here, however. If you look at the HTML source, firstly
there's something like this:

<table border="1">
</tr>

Simple PHP

Copyright © 2003 Robert Plank Page 153 of 189

What?! We're ending a row before we've even started one! Bad HTML. Very
bad. Fortunately it's easy to fix.

See this line?

if ($i % $cols == 0) { echo "</tr>\n\n"; }

Just change it to...

if ($i > 0 && $i % $cols == 0) { echo "</tr>\n\n"; }

This says if $i is a number bigger than 0 *AND* it divides into 7, end the current
row. This way, at 0, a new row will be created, but a row won't be closed
beforehand (because there is none).

The second part, is at the end, which is just a simple matter of ending the last
row in the table.

Find this line:

echo "</table>";

Put this line ABOVE it:

echo "</tr>\n";

All right. Now it's fixed. Still not done yet, though.

<?php

$cols = 7;
$rows = 4;

$total = $cols * $rows;

echo "<table border=\"1\">\n";
for ($i=0;$i<$total;$i++) {

Simple PHP

Copyright © 2003 Robert Plank Page 154 of 189

 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }
 echo "<td>$i</td>";
}
echo "</tr>\n";
echo "</table>";

?>

As I stated earlier, we need some way of finding out how many days are in the
month. That's somewhat easy with the date() function, once you get the hang of
it.

First we have to say what month and year we're going to do. I'm going to do
September of this year, since that's the month my birthday lands on. In PHP, the
month goes from 01 to 12. September is the 9th month of the year, so it's 09.

$month = "09";
$year = "2003";

$total = date("t", mktime(0,0,0,$month, 1, $year));

This tells us how many days are in the current month. If you want to go and tear
this line of code apart, head on over to the PHP web site and look at the
documentation on the date() and mktime() functions.

But basically, I tell the date() function: "We're going to be looking at September
1, 2003 for the moment. During this time, how many days are in the
month?" And it tells us... in our case, 30.

How is this applied to our example? Well, if you look at that above code
carefully you'll see that we didn't even need to give it the number of rows.

All we *needed* was the total, which we were able to get by multiplying the
number of rows by the number of columns. Plus, since this is a calendar, the
number of days in the week will *always* be seven, so we don't even have to
touch that.

Simple PHP

Copyright © 2003 Robert Plank Page 155 of 189

So, you take this line:

$total = date("t", mktime(0,0,0,$month, 1, $year));

And put it in the place of that other line with $total. You can completely get rid
of the line where we define $rows (not the line where we define $cols though!!)

This is what we have up until now:

<?php

$cols = 7;

$month = "09";
$year = "2003";

$total = date("t", mktime(0,0,0,$month, 1, $year));

echo "<table border=\"1\">\n";
for ($i=0;$i<$total;$i++) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }
 echo "<td>$i</td>";
}
echo "</tr>\n";
echo "</table>";

?>

Oops, but if you tried it you'd see that the days start counting on 0 and not 1.
That's not right!! So change this line:

echo "<td>$i</td>";

To this:

Simple PHP

Copyright © 2003 Robert Plank Page 156 of 189

echo "<td>".($i+1)."</td>";

And here is our work so far:

<?php

$cols = 7;

$month = "09";
$year = "2003";

$total = date("t", mktime(0,0,0,$month, 1, $year));

echo "<table border=\"1\">\n";
for ($i=0;$i<$total;$i++) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }
 echo "<td>".($i+1)."</td>";
}
echo "</tr>\n";
echo "</table>";

?>

Upload it and try. Everything *looks* right, for a moment, until we realize that
not all months start on Sunday. Whoops.

We need to figure out what day of the week the 1st will be on. We need another
similar to that line where we figured out the number of days in the month. A line
like this:

$firstday = date("w", mktime(0,0,0,$thismonth, 1, $year));

This will tell you the day of the week of any date... for example, September 5th
or 23rd. But, this time we asked, "What day of the week is it on September 1st?"

Now, PHP tells this to us in any number from 0 to 6, where 0 means Sunday and

Simple PHP

Copyright © 2003 Robert Plank Page 157 of 189

6 means Saturday. This actually works out quite well for us because *our*
calendar starts at 0 as well. So, we know when to start counting.

First of all, that for loop isn't going to do it for us anymore. It needs to be a
while loop now. (We learned how to change a for loop to a while loop in article
14.) So we take it:

for ($i=0;$i<$total;$i++) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }
 echo "<td>".($i+1)."</td>";
}

And make it into this:

$i=0;
while ($i<$total) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }
 echo "<td>".($i+1)."</td>";
 $i++;
}

I hope you'll still with me here. Because next, I want you to take this line:

echo "<td>".($i+1)."</td>";

And change it to this:

echo "<td>".($i-$firstday+1)."</td>";

Get what this is? In the month of September, for instance, the value of $firstday
is 1. We begin counting, 0 minus 1 equals -1, 1 minus 1 equals 0, which is
where we start. This way we actually start when the month starts as well.

Of course we add the one in there because we want to count the days of the
month as 1, 2, 3, etc. and not 0, 1, 2...

Simple PHP

Copyright © 2003 Robert Plank Page 158 of 189

In order to hide the dates there with negative numbers, we change that little line
yet again to:

if ($i < $firstday) { echo "<td> </td>"; }
else { echo "<td>".($i-$firstday+1)."</td>"; }

So if we aren't yet ready to show the dates, meaning it's not that day of the week
yet, we just put an empty cell in there.

We adjust the limit so it actually counts the entire month:

while ($i<$total) {

Becomes:

while ($i<$total+$firstday) {

What we have now is:

<?php

$cols = 7;

$month = "09";
$year = "2003";

$total = date("t", mktime(0,0,0,$month, 1, $year));
$firstday = date("w", mktime(0,0,0,$month, 1, $year));

echo "<table border=\"1\">\n";
while ($i<$total+$firstday) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }

 if ($i < $firstday) { echo "<td> </td>"; }
 else { echo "<td>".($i-$firstday+1)."</td>"; }

Simple PHP

Copyright © 2003 Robert Plank Page 159 of 189

 $i++;
}

echo "</tr>\n";
echo "</table>";

?>

One thing you may notice about this is that the last row is missing some cells.
So, what we've got to do to correct this is to create another while loop
afterwards, and just keep increasing $i by one and throwing an empty table in
there, until we reach the end of the row and can close it. Like this:

while ($i % $cols > 0) {
 echo "<td> </td>";
 $i++;
}

As long as $i isn't a multiple of 7 (or zero) we'll have to fill in those empty rows
up until the end.

You've just made a calendar for the month of September 2003. Try changing the
value of $month or year and it can show other months and dates. In fact, here's
some extra goodies I've added that will show you the month and year at the top:

<?php

$cols = 7;

$month = "09";
$year = "2003";

$monthlist = array("January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December");

$total = date("t", mktime(0,0,0,$month, 1, $year));
$firstday = date("w", mktime(0,0,0,$month, 1, $year));

Simple PHP

Copyright © 2003 Robert Plank Page 160 of 189

echo "<table border=\"1\">\n";

echo "<tr><td colspan=\"$cols\">".$monthlist[$month-1]."
".$year."</td></tr>\n";
while ($i<$total+$firstday) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }

 if ($i < $firstday) { echo "<td> </td>"; }
 else { echo "<td>".($i-$firstday+1)."</td>"; }
 $i++;
}

while ($i % $cols > 0) {
 echo "<td> </td>";
 $i++;
}
echo "</tr>\n";
echo "</table>";

?>

Assignment

Look up the is_int() function on php.net and figure out how to make this same
calendar, using division and is_int() instead of modulus.

QUIZ

1. If you have a cell in a table that you want empty but you still want to
appear, what should you fill it with? (Hint: non-breaking space)

Simple PHP

Copyright © 2003 Robert Plank Page 161 of 189

 A: <!-- space -->
 B:
 C: "
 D: Fill it with just a plain space.

2. How do we figure out what day of the week a month starts on?
 A: Guess.
 B: Use date(), and check the day of the week for the 1st of that month.
 C: Use date(), and check the day of the week for the last of that month.
 D: Use the built-in function dayofweek().

3. How is a quote represented within a quote?
 A: It isn't.
 B: \"
 C: /"
 D: ""

4. True or false: A statement such as this is legal:
echo $myarray[$somevalue+3];
 A: True.
 B: False.

5. What function tells how many days are in a particular month?
 A: date()
 B: mkdate()
 C: mktime()
 D: time()

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 162 of 189

Chapter 16 Functions With PHP

I've shown you how to use dozens of functions during your quest to become a
master at PHP. For instance, aren't you so glad there's a mktime() function to
compute the time for you? Good luck trying to do it manually... eek...

But first, to wrap up last week's calendar.

So you're thinking, I've spent all this time making a calendar, so now what?
What good is it to me? Well, since we haven't even begun to cover mySQL
you're going to have to look into that on your own. BUT, there is time to show
you a really simple way to do it.

This isn't the most "correct" way, but it'll get you started.

This is the calendar from last week:

<?php

$cols = 7;

$month = "09";
$year = "2003";

$monthlist = array("January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December");

$total = date("t", mktime(0,0,0,$month, 1, $year));
$firstday = date("w", mktime(0,0,0,$month, 1, $year));

echo "<table border=\"1\">\n";

Simple PHP

Copyright © 2003 Robert Plank Page 163 of 189

echo "<tr><td colspan=\"$cols\">".$monthlist[$month-1]."
".$year."</td></tr>\n";
while ($i<$total+$firstday) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }

 if ($i < $firstday) { echo "<td> </td>"; }
 else { echo "<td>".($i-$firstday+1)."</td>"; }
 $i++;
}

while ($i % $cols > 0) {
 echo "<td> </td>";
 $i++;
}
echo "</tr>\n";
echo "</table>";

?>

Now, let's pretend you had, say, newsletter archives. And, for the sake of
argument let's say all your archives were named by date. There are a million
ways you could do this, but here's an example filename for September 23, 2003:

2003.09.23.html

Lucky for us, there's a built-in function PHP called file_exists(). As you might
guess, it takes a file name and then looks to see if the file is actually there. For
the purposes of this example I'm assuming that the files which contain your
archives exist in the same directory this calendar script is running.

First I'll set a variable called $thefile in each loop which sets the hypothetical file
name to that format. (So as it goes through the month, $thefile will be
2003.09.1.html, 2003.09.2.html, etc.)

$thefile = $year.".".$month.".".($i-$firstday+1).".html";

Simple PHP

Copyright © 2003 Robert Plank Page 164 of 189

Now that we know what file name to look for, it's just a simple matter of using
file_exists() with it.

See this block?

if ($i < $firstday) { echo "<td> </td>"; }
else { echo "<td>".($i-$firstday+1)."</td>"; }

Make it this:

if ($i < $firstday) { echo "<td> </td>"; }
elseif (file_exists($thefile)) {
 echo "<td>".($i-$firstday+1)."</td>";
}
else { echo "<td>".($i-$firstday+1)."</td>"; }

So, if we've begin showing the dates, first we check to see if the appropriate
filename exists. If it does, then show the date number *with a link to the
article*.

Otherwise, just show the article date.

But here's the good part. Now we're going to turn this calendar into a function!
Oh yes, it'll be so much fun!

Start off by removing the lines that set $month and $year.

Next, put this code in:

function drawCalendar($month,$year) {
}

Now put all that code of yours inside the brackets.

Here's what we got:

<?php

Simple PHP

Copyright © 2003 Robert Plank Page 165 of 189

function drawCalendar($month,$year) {

 $cols = 7;

 $monthlist = array("January", "February", "March", "April", "May", "June",
"July", "August", "September", "October", "November", "December");

 $total = date("t", mktime(0,0,0,$month, 1, $year));
 $firstday = date("w", mktime(0,0,0,$month, 1, $year));

 echo "<table border=\"1\">\n";

 echo "<tr><td colspan=\"$cols\">".$monthlist[$month-1]."
".$year."</td></tr>\n";
 while ($i<$total+$firstday) {
 if ($i % $cols == 0) { echo "</tr>\n\n"; }
 if ($i % $cols == 0) { echo "<tr>\n"; }

 $thefile = $year.".".$month.".".($i-$firstday+1).".html";

 if ($i < $firstday) { echo "<td> </td>"; }
 elseif (file_exists($thefile)) {
 echo "<td>".($i-$firstday+1)."</td>";
 }
 else { echo "<td>".($i-$firstday+1)."</td>"; }
 $i++;
 }

 while ($i % $cols > 0) {
 echo "<td> </td>";
 $i++;
 }
 echo "</tr>\n";
 echo "</table>";
}

Simple PHP

Copyright © 2003 Robert Plank Page 166 of 189

?>

If you run it, nothing will happen, because it's inside a function now. The code
inside of that doesn't run automatically now. Think of it like the code for that
calendar is now inside a box, and we have to take the lid of the box off first to
see what's inside.

This isn't any old box, however. This is a magic box. We can put things into the
box, and, depending on what we put in, different things will come out. Look at
that first line we put in there for example:

function drawCalendar($month,$year)

Why did we take those lines out of our script that defined what $month and
$year were? Because, we'll be putting those *into* the function we've just called
"drawCalendar".

We're making our code reusable.

Try it out... put a line like this at the top of the file:

drawCalendar("09", "2003");

This calls our function called drawCalendar, giving the parameter $month a
value of "09" and the parameter year a value of "2003".

Now, change it to:

drawCalendar("10", "2003");

Or:

drawCalendar("5", "2015");

Are you beginning to see now? We could use that calendar function over and
over and over... say, for example, loop through the 12 months of the year, and be
able to show one page full of twelve small calendars for the entire year. You can

Simple PHP

Copyright © 2003 Robert Plank Page 167 of 189

do that on your own time... ;-)

Pretty neat, though, huh? Sure beats writing out all that code again and again.

Function names are case-sensitive. So, if you have a function called
"drawCalendar" and you try to say "drawcalendar("5", "2015");", it won't work.
They need to look exactly the same.

That takes care of functions that modify things. But there are other sorts of
functions. Ones that, instead of going out to do something, give something back.
Think of a function like someone who will do whatever you want. Now, you
can, for example, send someone out to pick up groceries for you. Or take your
car down to the Jiffy-Lube to get your oil changed. These are like those
modifying functions.

We can also have functions that access things. For example, you might have one
of your incarnated functions read the newspaper and tell you what's in it. The
function didn't change anything -- it didn't write on the newspaper or tear it into
shreds... it just passively looked for you.

How do we make functions like this? Well, pretty much in the same way as with
our last example. This is a simple function called readthis() that reads the
contents of a file, and then returns that data.

function readthis($file) {
 $fp = fopen($file, "r");
 $data = fread($fp, filesize($file));
 fclose($fp);
 return $data;
}

What good is this? Well, if we just did:

readthis("somefile.txt");

Nothing would happen. We need to put this data somewhere. Put if we did
something like this:

Simple PHP

Copyright © 2003 Robert Plank Page 168 of 189

$sometext = readthis("somefile.txt");

This would read the contents of a file called "somefile.txt" and put it all into a
variable called $sometext. Neat, huh?

We could also do:

echo readthis("somefile.txt");

And it would output that file right to the browser. Useful, isn't it?

Assignment

Look up functions on php.net. Add default values to the parameters of the
calendar function so that if the function is called with no parameters, such as:

drawCalendar()

It defaults to the current month and year. Use date() and mktime() to compute
the current month and year.

QUIZ

1. True or false: Is it possible to have functions within functions? (Look up the
documentation on functions at php.net.)
 A: True.
 B: False.

2. Which of the following is NOT TRUE about using functions in your scripts?
 A: They provide reusable code.
 B: Functions make it easier to iterate (loop) through things.
 C: Using functions gives you a faster compile time.
 D: Data returned from a function can be placed into a variable.

Simple PHP

Copyright © 2003 Robert Plank Page 169 of 189

3. True or false: Functions can accept arrays or objects as parameters.
 A: True.
 B: False.

4. True of false: Functions can only return strings or integers.
 A: True.
 B: False.

5. True or false: The function file_exists() automatically creates the file if it does
not exist.
 A: True.
 B: False.

Click Here For Correct Answers

Simple PHP

Copyright © 2003 Robert Plank Page 170 of 189

Chapter 17 Saving With PHP

It's time for the 17th and final chapter.

John Calder of theEzine.net gave this idea to me. He runs a newsletter
(theEzine.net) and had a ton of archived newsletters he needed to turn into
HTML format. (John actually runs a similar script to that calendar example you
saw in article #15...)

So, say you're in a similar predicament. You have a lot of newsletter archives...
or some other sort of documents that you need turned into HTML. Of course,
you could do a little search and replace, but if you have a LOT of documents to
save as HTML, that's quite a bit of work. I don't know about you, but if those
were my newsletter archives, I might want to add a header and footer... not only
that, but maybe a title tag, a header, maybe some sort of sub header...

So, we're going to make something like that. Ours is going to make it totally
based on templates (similar to the affiliate script) so you can use it with anything,
add your own variables and so on.

BEFORE WE START: Keep in mind that if you're on a Unix host you'll have to
chmod the folder these files will be written in, to 0777.

I'm going to start off my header.txt like this:

<html>
<head>
<title><%title%></title>
</head>

<body>
<h1><%header%></h1>

Simple PHP

Copyright © 2003 Robert Plank Page 171 of 189

<%subheader%>

And my footer.txt will contain:

</body>
</html>

Now, the first step is to read our header and footer templates and take those
<%variable%> things out of them. It is at these spots where we will actually be
filling things in later.

For now let's make a variable called $thefile and have it equal to the value of
$header. You'll see why I'm doing this in a sec.

$thefile = $header;

Then of course read the contents of the file just as we've done so many times
before.

$fp = fopen($thefile,"r");
$contents = fread($fp,filesize($thefile));
fclose($fp);

At this point I want an empty array. Let's call it $new.

$new = array();

This is the array we'll be putting the variable names into. (For example,
"subheader" and "header".)

Then, explode the string by <%. Why is this? Well, this way the array will be
separated each time there is a <%.

Right now the array called $contents looks like this.

Array
(

Simple PHP

Copyright © 2003 Robert Plank Page 172 of 189

 [0] => <html>
<head>
<title>
 [1] => title%></title>
</head>

<body>
<h1>
 [2] => header%></h1>

 [3] => subheader%>

)

Eww! What a mess. But we're on the right track. Think about it though... we've
already split the array up where ever there's an <%... so if we get rid of
everything after the %> on each line (where the variable name ends)... all that
will be left are our variable names.

Here, I'll show you.

Loop through the array and as we go, take out everything after the %>. Leave
only the variable name.

for ($i=0;$i<count($contents);$i++) {
 $contents[$i] = eregi_replace("%>.*$","",$contents[$i]);
}

Only, instead of putting each piece back into $contents, I want to put it into
another array... that array we created earlier called $new.

Now here's a useful trick if you want to keep piling things onto an array. Right
now our array is of size 0, right? Because there are 0 elements inside the array.
So the value of count($new); is 0.

If we fill something into the element 0 of the array $new, count($new) will give
us 1. See how that works out?

Simple PHP

Copyright © 2003 Robert Plank Page 173 of 189

So, if you want to add something to the end of an indexed array, for example, at
the end of our array called $new just add it to:

$new[count($new)]

Pretty neat, huh? I think so. So, as I said I want to add each piece into our array
called $new.

for ($i=0;$i<count($contents);$i++) {
 $new[count($new)] = eregi_replace("%>.*$","",$contents[$i]);
}

Here's $new now:

Array
(
 [0] => <html>
<head>
<title>
 [1] => title
 [2] => header
 [3] => subheader
)

Oops! Now that first element in the array shouldn't be in there. So, we need to
put an if-statement inside our loop to make sure that we ONLY want to do this if
we're really dealing with a variable here. (Meaning there's a "%>" in there
somewhere.

If you remember back to article 10 where we did regular expressions, this is
pretty easy. So we add this if-statement around it:

if (eregi("%>",$contents[$i]))

And this is our entire loop:

for ($i=0;$i<count($contents);$i++) {

Simple PHP

Copyright © 2003 Robert Plank Page 174 of 189

 if (eregi("%>",$contents[$i])) {
 $new[count($new)] = eregi_replace("%>.*$","",$contents[$i]);
 }
}

If you ran this code, the array $new would look like this:

Array
(
 [0] => title
 [1] => header
 [2] => subheader
)

Hey! That's just what we want.

Uh oh! But this only takes care of the header. What if there are variables in the
footer. Do we have copy and paste this code so it's there twice? No, make a
function. Because I said so, that's why.

I'm going to call the function getVars(). All we need to do is put function
getVars() { ... } around our code, and then add a return $new to the end.

This is everything:

<?php

$header = "header.txt";
$footer = "footer.txt";

function getVars($thefile) {

 $fp = fopen($thefile,"r");
 $contents = fread($fp,filesize($thefile));
 fclose($fp);

 $new = array();

Simple PHP

Copyright © 2003 Robert Plank Page 175 of 189

 $contents = explode("<%",$contents);

 for ($i=0;$i<count($contents);$i++) {
 if (eregi("%>",$contents[$i])) {
 $new[count($new)] = eregi_replace("%>.*$","",$contents[$i]);
 }
 }

 return $new;

}

?>

So how do we use this now? Simple:

$headerlist = getVars($header);
$footerlist = getVars($footer);

And there it is. Now $headerlist is an array containing the names of all the
variables in the header. Likewise with the footer.

These are two separate arrays. We want everything in one array. array_merge()
to the rescue.

$list = array_merge($headerlist,$footerlist);

I don't want duplicates in the array called $list so we'll use array_unique() to
eliminate any duplicate values.

$list = array_unique($list);

And then fill in any empty spaces in the array if anything was taken out.

$list = array_values($list);

Simple PHP

Copyright © 2003 Robert Plank Page 176 of 189

It's time to generate our HTML form. This is going to use the variable list from
$list to make a series of text fields where we can fill in the info we need later.

First I want to post this data to a file we haven't made yet, called write.php, and
also send a hidden value named $redirect to send us right back here where we
started.

echo "<form action=\"write.php\" method=\"post\">\n";
echo "<input type=\"hidden\" name=\"redirect\" value=\"save.php\">\n";

Oh, I also want to pass the values of $header and $footer to this other script.

echo "<input type=\"hidden\" name=\"header\" value=\"$header\">\n";
echo "<input type=\"hidden\" name=\"footer\" value=\"$footer\">\n";

Start a table.

echo "<table>\n";

Now let's loop through the array, and as we do, make a new row and put in two
columns: column one will be some text saying what the variable is we want to
fill, while column two will be the text field we will actually fill in.

for ($i=0;$i<count($list);$i++) {
 echo "<tr>\n";
 echo "<td>$list[$i]:</td>\n";
 echo "<td><input type=\"text\" name=\"list[".$list[$i]."]\"></td>\n";
 echo "</tr>\n\n";
}

I want to add in another row with textarea field where we paste the newsletter
into.

echo "<tr>\n";
echo "<td colspan=\"2\"><textarea name=\"contents\" cols=\"50\"
rows=\"8\"></textarea></td>\n";
echo "</tr>\n\n";

Simple PHP

Copyright © 2003 Robert Plank Page 177 of 189

Then, another text field asking us the filename to save this as:

echo "<tr>\n";
echo "<td>Save As:</td>\n";
echo "<td><input type=\"text\" name=\"saveas\"></td>\n";
echo "</tr>\n\n";

Close the table.

echo "</table>\n";

Add a submit button.

echo "<input type=\"submit\" name=\"submit\" value=\"Save\">";

Close the form.

echo "</form>";

There you are.

Here is the sample script save.php:

<?php

$header = "header.txt";
$footer = "footer.txt";

$headerlist = getVars($header);
$footerlist = getVars($footer);

$list = array_merge($headerlist,$footerlist);
$list = array_values(array_unique($list));

echo "<form action=\"write.php\" method=\"post\">\n";
echo "<input type=\"hidden\" name=\"redirect\" value=\"save.php\">\n";

Simple PHP

Copyright © 2003 Robert Plank Page 178 of 189

echo "<table>\n";
for ($i=0;$i<count($list);$i++) {
 echo "<tr>\n";
 echo "<td>$list[$i]:</td>\n";
 echo "<td><input type=\"text\" name=\"list[".$list[$i]."]\"></td>\n";
 echo "</tr>\n\n";
}

echo "<tr>\n";
echo "<td colspan=\"2\"><textarea name=\"contents\" cols=\"50\"
rows=\"8\"></textarea></td>\n";
echo "</tr>\n\n";

echo "<tr>\n";
echo "<td>Save As:</td>\n";
echo "<td><input type=\"text\" name=\"saveas\"></td>\n";
echo "</tr>\n\n";

echo "</table>\n";

echo "<input type=\"submit\" name=\"submit\" value=\"Save\">";

echo "</form>";

function getVars($thefile) {

 $fp = fopen($thefile,"r");
 $contents = fread($fp,filesize($thefile));
 fclose($fp);

 $new = array();

 $contents = explode("<%",$contents);

 for ($i=0;$i<count($contents);$i++) {

Simple PHP

Copyright © 2003 Robert Plank Page 179 of 189

 if (eregi("%>",$contents[$i])) {
 $new[count($new)] = eregi_replace("%>.*$","",$contents[$i]);
 }
 }

 return $new;

}

?>

What's left? Well, we submitted this to write.php so we sure have to do
something with it. Start over in a new file.

I've given you our function from chapter 16, to make your reading a file into a
variable easier. Use it.

<?php

function readthis($filename) {
 $fp = fopen($filename,"r");
 $data = fread($fp,filesize($filename));
 fclose($fp);
 return $data;
}

?>

The variables $header and $footer that we passed were just filenames, now. So
use the readthis() function to read the contents of the file $header into a variable
called $headtext. Likewise for $footer, which I want you to put into $foottext.

$headtext = readthis($header);
$foottext = readthis($footer);

We have to loop through the array we've posted called $list. If you recall how
we looped through associative arrays in chapter 10, it's like this:

Simple PHP

Copyright © 2003 Robert Plank Page 180 of 189

foreach($data as $key => $value)

As we do this, we have to do an eregi_replace() on all the variables in the header
and footer, as we loop through this array.

In fact I think we did almost this exact same thing in article 10. So let's just steal
code from that article:

foreach($data as $key => $value) {
 $text = eregi_replace("<%".$key."%>",$value,$text);
}

Only this needs to be changed to match the variable names we have now. Plus,
we have to do one replace on the header and another on the footer. So this
becomes:

foreach($list as $key => $value) {
 $headtext = eregi_replace("<%".$key."%>",$value,$headtext);
 $foottext = eregi_replace("<%".$key."%>",$value,$foottext);
}

Oh, but recall that we're changing text into HTML, so we want to use the
function nl2br() which takes all the newlines in our text file and puts a break
(
) so it looks okay in our browsers. This is to be used on $contents only
since we assume that our header and footer are already in HTML.

$contents = nl2br($contents);

Now, mash $headtext, $contents, and $foottext together. Put this all into a
variable called $text.

$text = $headtext.$contents.$foottext;

Now, let's output text to see what we've got.

echo $text;

Simple PHP

Copyright © 2003 Robert Plank Page 181 of 189

This is what you should have so far, in write.php:

<?php

function readthis($filename) {
 $fp = fopen($filename,"r");
 $data = fread($fp,filesize($filename));
 fclose($fp);
 return $data;
}

$headtext = readthis($header);
$foottext = readthis($footer);

foreach($list as $key => $value) {
 $headtext = eregi_replace("<%".$key."%>",$value,$headtext);
 $foottext = eregi_replace("<%".$key."%>",$value,$foottext);
}

$text = $headtext.$contents.$foottext;

echo $text;

?>

Everything looks good, right? We just need to write this to a file instead of
outputting it to the browser. Take out the line that says echo $text;.

The file name was (hopefully) submitted into write.php as the variable name
$saveas, will be the place where we'll save the file to.

You've done this before, of course. Open whatever $saveas is set to, for writing.

$fp = fopen($saveas,"w");

Then use fwrite() to shovel $text into that file.

Simple PHP

Copyright © 2003 Robert Plank Page 182 of 189

fwrite($fp,$contents);

Close the file.

fclose($fp);

It won't work otherwise, so consider yourself warned.

Lastly, we want to redirect our people to whatever the value of $redirect is, and
then we die.

header("Location:$redirect"); die();

So, here's our stuff:

<?php

function readthis($filename) {
 $fp = fopen($filename,"r");
 $data = fread($fp,filesize($filename));
 fclose($fp);
 return $data;
}

$headtext = readthis($header);
$foottext = readthis($footer);

foreach($list as $key => $value) {
 $headtext = eregi_replace("<%".$key."%>",$value,$headtext);
 $foottext = eregi_replace("<%".$key."%>",$value,$foottext);
}

$contents = nl2br($contents);

$text = $headtext.$contents.$foottext;

Simple PHP

Copyright © 2003 Robert Plank Page 183 of 189

$fp = fopen($saveas,"w");
fwrite($fp,$contents);
fclose($fp);

header("Location:$redirect"); die();

?>

Done.

Assignment

What happens if you try to make a new text file but that folder isn't chmoded to
0777?

QUIZ

1. True or false: It's possible to create an empty array.
 A: True.
 B: False.

2. To connect two arrays together, use:
 A: array_values()
 B: array_merge()
 C: array_unique()
 D: None of the above.

3. To convert an associative array to an indexed array, or to "fill in" the missing
elements in an indexed array, use:
 A: array_values()
 B: array_merge()
 C: array_unique()

Simple PHP

Copyright © 2003 Robert Plank Page 184 of 189

 D: None of the above.

4. To eliminate duplicates from an array, use:
 A: array_values()
 B: array_merge()
 C: array_unique()
 D: None of the above.

5. To search through an array, use:
 A: array_values()
 B: array_merge()
 C: array_unique()
 D: None of the above.

Click Here For Correct Answers

This concludes our tutorial. Hopefully, you have learned enough PHP to bravely
go out and conquer new worlds!

Simple PHP

Copyright © 2003 Robert Plank Page 185 of 189

Quiz Answers
Chapter 1

1. [B] [text]$onion[/text]
2. [A] True.
3. [A] [text]echo "$one two $three";[/text]
4. [D] [text]http://www.your.host/sales.php?monkeys=20&fork=tasty[/text]
5. [A] I won't see anything.

Chapter 2

1. [D] I won't see anything because the filename doesn't end in ".php"
2. [A] [text]include("hello.txt");[/text]
3. [C] Causes the script to give up right there and then.
4. [B] False.
5. [A] True.

Chapter 3

1. [A] The variable $email, containing whatever is written in the text box.
2. [A] a
3. [C] It redirects to [text]http://www.simplephp.com[/text]
4. [A] True.
5. [B] Tell the recipient's e-mail client that the message is in plain text.

Chapter 4

1. [A] True.
2. [B] Base 64
3. [C] [text]fopen()[/text] and [text]fread()[/text]
4. [A] ".=" adds onto the end of a variable's value while "=" just sets a new value.
5. [A] True.

Simple PHP

Copyright © 2003 Robert Plank Page 186 of 189

Chapter 5

1. [A] True.
2. [A] PHP scripts run only on the server, while JavaScript is run on the visitor's
machine.
3. [C] [text]alert()[/text]
4. [D] Something the author made up.
5. [C] The plus sign.

Chapter 6

1. [A] True.
2. [A] True.
3. [A] True.
4. [D] The period.
5. [C] [text]urlencode()[/text] and [text]urldecode()[/text]

Chapter 7

1. [A] element
2. [B] Only once in the script.
3. [A] True.
4. [B] Zero.
5. [A] True.

Chapter 8

1. [C] Reads a file into an array separated by each line.
2. [A] print readable
3. [B] It loops through each element in the array [text]$myarray[/text]
4. [D] [text]explode()[/text]
5. [A] Puts a [text]
[/text] tag at the end of each line so a file is readable in
HTML.

Chapter 9

1. [A] Returns the number of seconds since January 1, 1970.

Simple PHP

Copyright © 2003 Robert Plank Page 187 of 189

2. [C] Always rounds down.
3. [A] Allows us to pass data from an HTML document into a PHP script,
without that data being displayed to the user.
4. [B] The remainder of some number.
5. [D] Takes a date or length of time written in plain English and converts it to
Unix time.

Chapter 10

1. [C] Indexed arrays contain numbered elements (0, 1, 2, etc.) while
associative arrays contain non-numbered elements (like "toast", "bacon",
etc.)
2. [A] [text]ereg()[/text] only finds a match,[text]ereg_replace()[/text] makes a
replacement at that match.
3. [A] [text]eregi()[/text] doesn't care if a matching pattern is uppercase or
lowercase.
4. [B] Associative arrays.
5. [A] Everything to the right of the question mark in the URL (eg,
[text]script.php?junk[/text])

Chapter 11

1. [B] Writing only.
2. [A] "[text]\r[/text]" means carriage return, "[text]\n[/text]" means newline.
3. [B] Chmod the file to 0777.
4. [A] [text]in_array()[/text]
5. [C] Eliminates whitespace (extra spaces, line feeds, carriage returns, etc.) from
the ends of a string.

Chapter 12

1. [C] Set the cookie's date to a point in the past.
2. [B] Formats a Unix timestamp into a readable date.
3. [D] [text]gmdate()[/text] gives us a formatted date in Greenwich Mean Time,
[text]date()[/text] is only the local time.
4. [A] True.
5. [A] True.

Simple PHP

Copyright © 2003 Robert Plank Page 188 of 189

Chapter 13

1. [B] False.
2. [B] False.
3. [B] The size of the file [text]$somefile[/text], in bytes.
4. [C] [text]file()[/text] separates each line of a file but doesn't get rid of newline
characters.
5. [A] A total of the number of elements contained within [text]$myarray[/text].

Chapter 14

1. [D] Increases the value of $george by 1.
2. [A] 50.
3. [C] Three.
4. [A] Division.
5. [B] 1 2 4 8 16

Chapter 15

1. [B] [text] [/text]
2. [B] Use [text]date()[/text], and check the day of the week for the 1st of that
month.
3. [B] [text]\"[/text]
4. [A] True.
5. [A] [text]date()[/text]

Chapter 16

1. [A] True.
2. [C] Using functions gives you a faster compile time. (remember, this is the
INCORRECT answer of the bunch)
3. [A] True.
4. [B] False.
5. [B] False.

Simple PHP

Copyright © 2003 Robert Plank Page 189 of 189

Chapter 17

1. [A] True.
2. [B] [text]array_merge()[/text]
3. [A] [text]array_values()[/text]
4. [C] [text]array_unique()[/text]
5. [D] None of the above.

Another eBookWholesaler Publication

http://www.ebookwholesaler.net/cgi-bin/ccShare.pl?cmnd=home&id=PhilipLewi

	Introduction
	Chapter 1 Site Personalization With PHP
	Assignment:
	QUIZ

	Chapter 2 Password Protection With PHP
	Assignment:
	QUIZ

	Chapter 3 Autoresponders With PHP
	Assignment
	QUIZ

	Chapter 4 More Autoresponders With PHP
	Assignment
	QUIZ

	Charpter 5 JavaScript Fun With PHP
	Assignment
	QUIZ

	Chapter 6 More JavaScript Fun With PHP
	Assignment:
	QUIZ

	Chapter 7 Basic Arrays and PHP
	Assignment:
	QUIZ

	Chapter 8 File Handling With PHP
	Assignment
	QUIZ

	Chapter 9 Anything of the Day With PHP
	Assignment
	QUIZ

	Chapter 10 Affiliate Script With PHP
	Assignment:
	QUIZ

	Chapter 11 Our Knowledge With PHP
	Assignment:
	QUIZ

	Chapter 12 Cookie Fun With PHP
	Assignment
	QUIZ

	Chapter 13 Comparison With PHP
	Assignment
	QUIZ

	Chapter 14 Loops With PHP
	Assignment
	QUIZ

	Chapter 15 A Calendar With PHP
	Assignment
	QUIZ

	Chapter 16 Functions With PHP
	Assignment
	QUIZ

	Chapter 17 Saving With PHP
	Assignment
	QUIZ

	Quiz Answers
	
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17

